Abstract

Classifying this indefinite big data, is computationally intensive as a large amount of data is related with an existential probability of undefined or undetermined values of raw data. Classifying is hindered by a large amount of data from various sources. RVM, a Bayesian formulation of the linear model both for classification and regression, has lately involved a lot of interest in the research community. The paper aims at learning kernelized RVM classifier to evaluate Ebola virus outbreak, using generalization error, intra class separability, missing probability P_i is compared to SVM. RVM relevance impact with other epidemic diseases of Ebola Virus is also compared.

References

April 2013, pg.295 – 299.

4. Fatemeh Sheikholesalmi and Georgios B. Giannakis,“ Online Subspace Learning and Nonlinear Classification of Big Data with Misses” ,Dept. of ECE and Digital Tech. Center, Univ. of Minnesota.

5. Geng Fan, Dengwu Ma, Xiaoyan Qu, Xiaofeng Lv, “ Multi-scale Relevance Vector Machine Classification Based on Intelligent Optimization”, 2012 International Conference on Systems and Informatics (ICSAI 2012)

12. Maytal Saar-Tsechansky, “Handling Missing Values when Applying Classification Models”,Journal of Machine Learning Research 8 (2007) 1625-1657 Submitted 7/05; Revised 5/06; Published 7/07

Index Terms

Computer Science
Information Sciences

Keywords
Novel RVM Approach to Structuring and Classifying Epidemic Outbreak Data

classification, relevance vector machine, support vector machine, Naive Bayes, neural network, generalization error, intra class separability, missing probability, Predictive value imputation, distributed based imputation