Circularly Polarized Antenna Array Technique for MIMO Application

International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA

Volume 127 - Number 3

Year of Publication: 2015

Authors:
Bhaghyashree Sharma, Rajeev Mathur

Abstract

This paper presents the design of a 2.77GHz MIMO antenna with two rectangular patches loaded by two split ring resonator (SRR) as the antenna elements. Each antenna element has area of 56x25mm². A compact and low correlation coefficient antenna system covering bandwidth 178MHz for wireless communication standards is proposed.

First, a linearly polarized rectangular patch antenna is discussed. In order to increases the circular polarization; the patch structure is further modified into split ring structure. An array of such split ring is then constructed to increases the directivity, axial ratio, gain and efficiency. The antenna is fabricated on a FR4 substrate.

The performance of the proposed antenna design is analyzed and the results are compared with the simulations using IE3D tool. Through the analysis of mutual coupling and correlation between each pairs of antenna ports, it is shown that the antenna achieves good polarization and directivity diversity. A high diversity gain is therefore being achieved. The performance
results exhibited by the proposed antenna make it extremely useful for the future generation of wireless broadband communication system.

References


2. S. Zhang, K. Zhao, B. Zhu, Z. Ying, and S. He "MIMO reference antenna with controllable correlation and total efficiencies" progress in electromagnetic research, pier 145, 115-121, 2014 DOI : 10.2528/pier 14010507


5. Haili Zhang, Zhihong Wang, Jiawei Yu, and Jia Huang "A compact MIMO antenna for wireless communication" IEEE antenna and propagation magazine, vol. 50, no. 8, december 2008

6. Antenna theory by C.A. Balanis.

Index Terms

Computer Science Wireless

Keywords

Rectangular patch, rectangular patch loaded with SRR, antenna array, MIMO application, wireless communication.