Optimal Design of Robust Fractional Order PID for the Flight Control System

International Journal of Computer Applications
Foundation of Computer Science (FCS), NY, USA

Volume 128
Number 14

Year of Publication: 2015

Authors:
Parvesh Kumar, Shiv Narayan, Jetesh Raheja

10.5120/ijca2015906759

Abstract

Nature inspired algorithms are the most popular and robust algorithms for the optimization of real world problems like pitch control of an aircraft system. This paper introduces Bat algorithm and Differential Evolution technique for the multi-objective optimization based designing of the fractional order PID (FOPID) and integer order PID controllers. The optimized values obtained from the techniques have been implemented for the Pitch control of an aircraft system to obtain the desired robust response. In this paper a mixed sensitivity H_{∞} problem is designed and simulated using Matlab. It has been shown that the design of FOPID using multi-objective bat algorithm gives better results than others.

References

2. Oustaloup, A. "Fractional order sinusoidal oscillators: optimization and their use in highly

Index Terms

Computer Science Artificial Intelligence

Keywords

Fractional order PID controller; Bat algorithm; PID optimization; Mixed sensitivity problem; Pitch control of an aircraft system.