Abstract

Personalized Web Image search is the one searching for the particular images of User intention on the Web. For searching images, a user might provide query terms like keyword, image file, or click on few image file, and therefore the system can determine the images similar to the query. The similarity used for search criteria could be Meta tags, color distribution in images, region/shapes attributes, etc. Web-scale image search engines namely Google and Bing searches for images are relying on the surrounding text features. It is highly cumbersome and complicated for the web-scale based image search engines to interpret users search intention only by querying of keywords. This leads to the incorporation of noise and high ambiguity in the search results which are extremely unfit in the context of the users. It's also a necessary mandate for using visual information for solving the problem of ambiguity in the text-based image retrieval scenario. In the case of Google search, search text box will auto complete while user is typing similar added keywords. This method will differ from user intention while searching. So to avoid this kind of faults, it is important to use visual information in order to
solve the uncertainty in text-based image retrieval. To retrieve exact matching, and acquire
user’s intention we can allow them text query with extended or related images as a suggestion.
We have proposed an innovative Web image search approach. It only needs the user to click on
one query image with minimal effort and images from a pool fetched by text-based search are
re-ranked based on both visual and textual contents.

References

 Approach”, International Journal of Advanced Research in Computer Science and Software
 Engineering, 2005.
2. P. Chouragade and P. Chatur, “Visual Re-rank: Applying to Large Scale Image Search as
 a Soft Computing Approach,” International Journal of Management, IT and Engineering, 3(3),
 Conference on Multimedia, (MULTIMEDIA 06), ACM, 35-44.
 Hypergraph Ranking, In Proceedings of the IEEE Conference on Computer Vision and Pattern
 Recognition (CVPR - 2010), 3376–3383.
 via Content Based Clustering, In Proceedings of the SLAM, (New York City).
 on Pattern Analysis and Machine Intelligence, 30(8), 1472–1482, 2008.
10. Ah-Pine, J., Bressan, M., Clinchant, S. Csurka, G. Hoppenot, Y .and Renders, J. M.
 2009. Crossing Textual and Visual Content in Different Application Scenarios, In Proceedings
 of the Multimedia Tools and Applications, 42(1), 31-56.
 Results using Query-Relative Classifiers, In Proceedings of the IEEE Conference on Computer
 Vision and Pattern Recognition (CVPR- 2010), 1094–1101.
 Concept-based Query Expansion and Re-ranking for Multimedia Retrieval, In Proceedings of
 the 15th International Conference on Multimedia, 991–1000, ACM.
 (ICME?03),IEEE, 445–448.
 Distance Functions for Shape-based Image Retrieval and Classification. In Proceedings of the

Index Terms

Computer Science

Information Sciences

Keywords

Image search, Keyword Expansion, One-Click Method, Personalized Web Image Search, Re-ranking, User Intention.