Abstract

The use of autonomous unmanned aerial vehicle (UAV) has been on the rise. They are used to replace an ever-increasing amount of labor. There is a need for unmanned aerial systems to operate safely in the environment around them. The work in this paper aims at creating an obstacle avoidance system using Stereo Vision. The work uses standard block matching algorithms. OpenCV and the KTTI Vision Benchmark suite is used. The ArduPilot SITL simulator is used for running the algorithms and displaying the results. The droneapi is an application that is used to access the UAV's information and describe new kinds of flight behavior. The application created is known as STOBA (Stereo Based Obstacle Avoidance), which was created to run within the ArduPilot SITL, in order to provide the mentioned obstacle avoidance capability.

References

A Novel Stereo based Obstacle Avoidance System for Unmanned Aerial Vehicles

https://github.com/rmackay9/ardupilot-balloon-finder
http://centmesh.csc.ncsu.edu/trac/MeshBed/wiki/HardWare/Drones/Autopilot
Presentation of Real Time Obstacle Avoidance Algorithms Using Solely Stereo Vision.”,
IARP/EURON International Workshop on Robotics for risky intervention and Environmental
for Obstacle avoidance using a Stereoscopic Camera", Thrid Panhellenic Scientific Student
Conference on Informatics, 2009
7. Viet CN, Marshall IW,"Vision Based obstacle avoidance for a small Low-cost Robot",
International Conference on Advanced Robotics (ICAR), 2007
10. Greiger Andreas, Lenz Philip, Stiller Christoph and Urtasun Racquel, “Vision meets
Robotics: The KTTI Dataset”, International journal of Robotics Research (IJRR), 2013

Index Terms
Computer Science
Automated Systems

Keywords
Stereo Vision, Obstacle avodiance, UAV,OpenCV