An all new technique has been devised to solve non-linear Lane-Emden type equations. This novel technique is based on the Perturbation Iteration Algorithm. In this paper, a few examples are presented for the illustration of the power and wide usability of the proposed method. Moreover, a compare and contrast with the actual solution is provided. It has been evaluated that by employment of this method, the construction of perturbation solutions converging swiftly to the true solutions usually becomes easy, by giving us room to exactly demonstrate how ε-terms influence linearized equations. This swift convergence of the method gives solutions that are accurate quantitatively through relatively little iteration.

References

the homotopy perturbation method, Chaos, Solitons and Fractals, Vol. 38, No. 2, pp. 400-408.
21. Richardson, O.U. (1921) The Emission of Electricity From Hot Bodies, London:
Longmans Green and Company, UK.
equation, Journal of Mathematical Physics, Vol. 34, No. 9, pp. 4364-4369.
second-order ordinary differential equations, Applied Mathematics and Computation, Vol. 128,
No. 1, pp. 45-57.

Index Terms

Computer Science
Algorithms

Keywords

Lane-Emden Equation, Second-order Initial Value Problems, Perturbation Iteration Method,
Numerical Solution, Fast Convergence.