Abstract

Traditional caches see a fixed-size page; a Web cache, on the other hand, sees complete objects (text files, images, or video clips), which vary considerably in size. In addition, a traditional cache deals with addresses, while a Web cache can potentially deduce more contextual information from its objects. Web objects are predominantly read-only, taking implementation of cache coherence easier. The response times of Web accesses are in the order of seconds (versus milliseconds for system access), which allows for more elaborate caching algorithms. Finally, a Web cache encounters more dimensions of dependence than are taken into account by traditional methods. Primary cache replacement algorithms consider arrival time as the only one factor as the basis of their functionality. They disregard parameters such as page size, fetching delay, reference rate, and invalidation cost and invalidation frequency of a web object. Considering these parameters produces better and more apt results with greater efficiency, thereby surpassing traditional and conventional algorithms such as LRU, LIFO and LFU in performance and accuracy. Most of them are favorable to objects with homogenous sizes. Also, many of these algorithms depend on manual interference to find quick
cures for symptoms instead of understanding the core issues. Because the cache space is
limited and no technology can be as suitable to cater to each user’s request separately, we
need caching algorithms that are intelligent and adapt to the available resources and utilize
them optimally. Systems must evolve towards more scalable, adaptive, efficient and
self-configuring web caching systems to effectively support the phenomenal growth in demand
for web content on the internet. Adaptive caching views caching problems as a way of
optimizing global data dissemination. Studies have shown that adaptive algorithms yield better
results than conventional caching algorithms.

References

Adaptive Web Traffic Reduction”, Proceedings of World Academy of Science, Engineering and
Technology, Volume 17, December 2006
technique of web caching using Fuzzy Inference System”, International Journal of Computer
Applications, Volume 43-No.17, April, 2012
regression”, IEEE, 1999
Improvement of the response speed”, Indian Journal of Computer Science and Engineering”,
Volume 3 – No. 2, April-March, 2012
6. Farhan Mohamed, Abdul Samad Ismail, Siti Mariyam Shamsuddin, “Web caching and
prefetching: Techniques and analysis in World Wide Web”, Proceedings of the Postgraduate
Annual Research Seminar, 2005
7. Hossam Hassanein, Zhengang Liang and Patrick Martin, “Performance comparison of
Alternative Web Caching Techniques”, Proceedings of the Seventh International Symposium on
Computers and Communications, 2002
9. Ismail Ari, Ahmed Amer, Robert Gramacy, Ethan L.Miller, Scott A. Brandt, Darrell D.E.
Long, “ACME: Adaptive Caching using Multiple Experts”
11. S.Sulaiman, Siti Mariyam Shamsuddin and A.Abraham, “Intelligent web caching using
Adaptive Regression Trees, Splines, Random Forests and Tree Net”
caching architecture”, Computer Networks and ISDN Networks, November 1998
web cache”, Expert systems with applications, November 2011
15. Waleed Ali, Siti Mariyam, Shamsuddin, Abdul Samad Ismail, “A Survey of Web caching
and Prefetching”, International Journal of Advanced Soft Computing Applications, Volume 3-
No. 1, March 2011
based on the heterogeneity of web object and reference characteristics”, Information Sciences,
May 20, 2005
Index Terms

Computer Science Information Sciences

Keywords

Web Caching, Caching Cache Algorithm.