Abstract

Greedy perimeter stateless routing (GPSR), a scalable routing protocol for wireless sensor networks (WSNs) that use the randomized positioning of routers in different configurations and algorithms are used to make packet delivery decisions through nodes. As the number of destinations increases this protocol scales better in per-router state than shortest-path and ad-hoc routing protocols. Because of scalable topology property in GPSR, it uses local topology (e.g. star, ring) to find out new and correct routes quickly as per demand. In this paper, we describe the GPSR protocol and optimization of mobile wireless networks to compare its performance based on changes in topology. Our simulation elaborates GPSR’s scalability on densely deployed wireless networks based on route adaptability.

References

Scalable approach in Greedy Perimeter Stateless Routing

pages.

Index Terms

Computer Science Networks

Keywords

GPSR, WSN, Scalability