Abstract

A square difference 3-equitable labeling of a graph G with vertex set V is a bijection f from V to $\{1, 2, ..., |V|\}$ such that if each edge uv is assigned the label -1 if $|[f(u)]^2 - [f(v)]^2 | \equiv -1 (mod\ 4)$, the label 0 if $|[f(u)]^2 - [f(v)]^2 | \equiv 0 (mod\ 4$) and the label 1 if $|[f(u)]^2 - [f(v)]^2 | \equiv 1 (mod\ 4)$.
\[\left\lfloor \frac{1}{2} \left(1 \mod 4 \right) \right\rfloor \], then the number of edges labeled with \(i \) and the number of edges labeled with \(j \) differ by at most 1 for \(-1 \leq i, j \leq 1\). If a graph has a square difference 3-equitable labeling, then it is called square difference 3-equitable graph. In this paper, we investigate the square difference 3-equitable labeling behaviour of middle graph of paths, fan graphs, \(P_{2n} \), \(S_1 \), \(mK_3 \), triangular snake graphs and friendship graphs.

References

Index Terms

Computer Science

Applied Mathematics

Keywords
Square difference 3-equitable labeling, square difference 3-equitable graphs