Abstract

In this article we developed an inventory model for non-instantaneous decaying items is considered under crisp and fuzzy environment. In this study we have considered stock dependent demand rate and variable deterioration. It is supposed that shortages are allowed and partially backlogged with exponential backlogging rate. Holding cost follows the learning curve. The deterioration rate, ordering cost, shortage cost and deterioration cost are assumed as a triangular fuzzy numbers. The aim of our study is to defuzzify the total cost function by signed distance method. This model is developed in both crisp and fuzzy surroundings. A numerical experiment is given to demonstrate the developed crisp and fuzzy models. Sensitivity analysis is implemented to examine the effect of parameters. The convexity of the total cost function is shown by graphically.

References

two-level storage and partial backlogging under inflation’, International Journal of Services and
Operations Management, 16 (1), 105–122.

inventory model of deteriorating items with various types of demand and time dependent

22. Saha, S., Chakrabarti, T.(2012), ‘Fuzzy EOQ Model with Time Dependent Demand and

exponential demand rate and shortages’ Uncertain Supply Chain Management, 1(2), 67-76.

inflation under two limited storage capacity’, International Journal of Industrial Engineering
Computations, 4 (4), 479-490.

deeming imperfect production and stock dependent demand’, International Journal of Industrial
Engineering Computations. 5(1), 151-168.

dependent demand under inflation in a supply chain’ International Review of Pure and
Advanced Mathematics, 1, 31-39.

demand under volume flexibility and learning’ Uncertain Supply Chain Management, 3(2),
147-158.

item in which holding cost varies with time’ Electronic Journal of Applied Statistical Analysis.1, (
1),16–23.

non-instantaneous deteriorating item with time dependent holding cost and exponential demand

non-instantaneous deteriorating items with stock-dependent demand and partial backlogging’

32. Yao, J.S., Chiang, J.(2003), ‘Inventory without backorder with fuzzy total cost and fuzzy
storing cost defuzzified by centroid and signed distance’ European Journal of Operational
Research, 148, 401-409.

Information Sciences, 93, 283-319.

of Operation Research, 13, 201-206.

Index Terms

Computer Science Fuzzy Systems
Keywords

Non-instantaneous-deterioration, Triangular fuzzy numbers, Signed distance, Learning, Partial backlogging