Abstract

In Recent studies, mobile element acts as a mechanical carrier equipped with a powerful transceiver and battery. It directly collects the data from the sensors in the sensing environment via single-hop communication when traversing its transmission range and eventually delivers the collected data to the remote central. As a mobile element collects the data from every sensor node, the length of the mobile element tour will be increased. It results in increased data gathering latency. To solve this problem, several algorithms have been proposed. One of them called Toward Energy Efficient Big Data Gathering (TEEBD). Even it simplifies the mobile element data gathering by calculating the optimum number of clusters. Mobile element should wait until all of its cluster members uploads its data. It gives increased data gathering latency, and Packet loss due to buffer flow. In this paper, we propose two novel approaches called Energy Efficient Big Data Gathering using Local data Collector (EEBDG-LC) and Energy Efficient Big Data Gathering using Local data Collector with Threshold (EEBDG-LCWT). First approach concentrates on placing a local data collector in every centroid of the region. In which mobile element collects the information only from local data collector instead of all of its sensor
nodes. It increases the speed of mobile element data gathering. The main goal of the second
approach is to reduce the traffic in the local sensing region of EEBDG-LC based on the
threshold value. In which node reaches the threshold value are only allowed to transmit data to
the local data collector. Others go to the sleep mode immediately. Thus, increases the lifetime
of the sensor network, and packet delivery ratio. Various data gathering mechanisms such as
mobile element data gathering and data gathering using UAV have been used and comparison
between these two has been done. The effectiveness of our approach is validated through
extensive simulations.

References

1. Holger Karl and Andreas Willig, “Protocols and architectures for wireless sensor
3. J. Luo, J. Panchard, M. Pi’orkowski, M. Grossglauser, and J.P. Hubaux, “MobiRoute:
routing towards a mobile sink for improving lifetime in sensor networks,” In . 2nd IEEE/ACM
4. Guoliang Xing , Tian Wang, Zhihui Xie, and Weijia Jia , ”Rendezvous Planning in
 Wireless Sensor Networks with Mobile Elements,” In. IEEE transactions on mobile computing,
5. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy efficient
7. Z. Zhang, M. Ma, and Y. Yang, “Energy efficient multi-hop polling in clusters of
 two-layered heterogeneous sensor networks,” In. IEEE Transitions on Computer, pp. 231–245,
 2008.
8. T. A. A. Alsbou, M. Hammoudeh, Z. Bandar, and A. Nisbet,“An overview and
 classification of approaches to information extraction in wireless sensor networks,” In.
 Proceedings of the 5th International Conference on Sensor Technologies and Applications
 (SENSORCOMM ’11), pp. 255, 2011.
 with mobile elements: a survey,” In. ACM Transactions on Sensor Networks, pp. 7:1–7:31,
 2011.
10. A.A. Somasundara, A. Ramamoorthy, M.B. Srivastava, “Mobile element scheduling for
 efficient data collection in wireless sensor networks with dynamic deadlines,” In. proceedings of
 Wireless Sensor Networks,” In. IEEE parallel and distributed processing symposium (IPDPS),
 Big Data Gathering in Densely Distributed Sensor Networks,” In. IEEE Trans. Emerging Topics
13. Say Sotheara, Kento Aso, Naoto Aomi, and Shigeru Shimamoto, ”Effective Data

Index Terms

Computer Science Wireless

Keywords

Local data collector, Unmanned Arial Vehicle, Threshold, Mobile Element.