Abstract

Underwater sensor network has different applications ranging from environmental monitoring, data collection to survey mission and coastal surveillance. In this paper several fundamental aspects of underwater acoustic communication are discussed in detail. Different architecture and channel model are also been discussed. This paper also covers the latest techniques which are used in order to increase the data rate in underwater acoustic communication. The performance of the energy detector which is considered for binary hypothesis decision fusion has been reviewed and analyzed on different parameters of the investigation. This paper is based on a MIMO model for underwater acoustic network using Neymen-Pearson/ Bayesian hypothesis testing. Previous investigation and the conclusion will be useful for possible future research direction.

References


20. M. Zorzi, P. casari and A.F. Harris, “An energy-efficient routing schemes for underwater
24. B. Chen, R. Jiang, T. Kasetkasem, and P. K. Varshney, “Channel aware decision fusion
2004.
2010.
26. Lei and R. Schober, “Coherent max-log decision fusion in wireless sensor networks,”
27. D. Ciuonzo, G. Romano, and P. Salvo Rossi, “Channel-aware decision fusion in
distributed MIMO wireless sensor networks: Decode-and-fuse vs. decode-then-fuse,” IEEE
28. D. Ciuonzo, G. Romano, and P. Salvo Rossi, “Performance analysis and design of
maximum ratio combining in channel-aware MIMO decision fusion,” IEEE Trans. Wireless
29. D. Ciuonzo, G. Romano, and P. Salvo Rossi, “Optimality of received energy in decision
fusion over Rayleigh fading diversity MAC with non-identical sensors,” IEEE Trans. Signal
Fusion in Underwater Sensor Networks” IEEE SENSORS JOURNAL, VOL. 15, NO. 3 MARCH
2015.
32. F. Li, J. S. Evans, and S. Dey, “Decision fusion over non-coherent fading multi-access
33. D. Ciuonzo, G. Romano, and P. Salvo Rossi, “Optimality of received energy in decision
fusion over Rayleigh fading diversity MAC with non-identical sensors,” IEEE Trans. Signal

Index Terms

Computer Science
Communications
Keywords

Decision Fusion, Energy detection, Multiple-input Multiple-output (MIMO), underwater sensor networks