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ABSTRACT 

This paper compares the Fast Single Image Haze Removal 

(FSIHR) using Color Attenuation Prior (CAP) and Multi-

Scale Fusion (MSF) methods. Single image haze removal has 

been a challenging problem due to its ill-posed environment. 

FSIHR works as simple but powerful color attenuation earlier, 

for removal of haze from a single input hazy image. MSF 

method is a fusion-based approach that results from two 

original hazy image inputs by applying a white balance and a 

contrast enhancing process. To merge the information of the 

derived inputs successfully, to maintain the regions with good 

visibility, it filters their important features by computing three 

measures (weight maps): luminance (Y), chromaticity (C), 

and saliency (S). The other FSIHR using CAP creates a linear 

model for modeling the picture depth of the hazy image with a 

supervised learning method; the depth information can be well 

recovered. With the depth map of the hazy image, the 

transmission and the scene radiance restoration via the 

atmospheric scattering model, and thus efficiently remove the 

haze from a single image. While the MSF method is faster 

than existing single image dehazing strategies and yields 

precise results. 

Keywords 
Dehazing, image defogging, image restoration, depth 

estimation. 

1. INTRODUCTION 
Outdoor images taken in bad weather conditions (e.g., foggy 

or hazy) generally lose contrast and fidelity, resulting from the 

fact that light is absorbed and scattered by the cloudy medium 

such as particles and water droplets in the atmosphere through 

the process of propagation. Reinstatement of images taken in 

these specific situations has caught increasing attention in the 

last years. This job is important in a number of outdoor 

applications such as remote sensing, intelligent vehicles, 

object recognition and surveillance. In remote sensing 

systems, the recorded bands of reflected light are processed 

[1], [2] in order to restore the outputs. Multi-image techniques 

[3] solve the image de hazing difficulty by processing several 

input images that have been taken in different atmospheric 

situation. A more difficult problem is when only a single 

degraded image is available. Solutions for such cases have 

been introduced only in recent times [6]–[10]. In this paper 

we introduce an alternative single-image based approach that 

is able to accurately dehaze images using only the original 

degraded information. An extended conceptual of the core 

idea has been recently introduced by the authors in [11]. 

Moreover, most automatic systems, which strongly depend on 

the meaning of the input images, fail to work usually caused 

by the degraded images. Therefore, improved  techniques of 

image haze removal will benefit many image understanding  

and computer vision applications such as aerial imagery [1], 

image classification [2]–[5],image/video retrieval [6]–[8], 

remote sensing [9]–[11] and video analysis and recognition 

[12]–[14].Since concentration of the haze is different from 

place to place and it is difficult to detect in a hazy image, 

image dehazing is thus a challenging task. Although Tan’s 

approach is able to attain notable results, it tends to produce 

over-saturated images. Fattal [15] proposes to remove the 

haze from color images based on Independent Component 

Analysis (ICA), but the approach is time-consuming and 

cannot be used for grayscale image dehazing.  

First, this approach performs an effective per-pixel 

calculation, different from the majority of the earlier methods 

[6]–[8] that process patches. An appropriate per-pixel strategy 

reduces the amount of artifacts, since patch based methods 

have some limitations due to the assumption of constant air 

light in every patch. In broad, the assumptions made by patch-

based techniques do not hold, and therefore additional post 

processing steps are necessary (e.g. the method of He et al. [8] 

needs to smooth the transmission map by alpha-matting). 

Secondly, since do not estimate the depth (transmission) map, 

the difficulty of this approach is lower than most of the earlier 

strategies. Finally, this technique performs faster which makes 

it appropriate for real-time applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1.An overview of the proposed dehazing method. Top-

left: Input hazy image. Top-right: Restored depth map. 

Bottom-left: Restored transmission map. Bottom-right: 

Dehazed image. 

Even compared with the recent effective implementation of 

Tarel and Hautière [10] this technique is able to restore a hazy 

image in less time, while screening more visually plausible 

results in terms of colors and details 
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Furthermore, it has some complications to deal with dense-

haze images. Inspired by the widely used dark-object 

subtraction technique [16] and based on a large number of 

experiments on haze-free images, He et al. [17] discover the 

dark channel prior (DCP) that, in most of the non-sky patches, 

at least one color path has some pixels whose intensities are 

very low and close to zero. With this prior, they restore the 

haze-free image by the atmospheric scattering model and they 

estimate the thickness of haze. Figure 1 shows types of haze-

relevant features with Random Forest [52] to estimate the 

transmission. Also overview of the CAP dehazing method is 

shown in Figure 1. The efficiency of this dehazing method is 

dramatically high and the dehazing efficacy is also superior to 

that of prevailing dehazing algorithms as we will show in 

Section 6. A conference version of our work has been 

presented in [53].The remainder of this paper is organized as 

follows: 

In Section 2, we review the atmospheric scattering model 

which is widely used for image dehazing and give a concise 

analysis on the parameters of this model. In Section 3, we 

present a novel color attenuation prior. In Section 4, we 

discuss the approach of recovering the scene depth with the 

proposed color attenuation prior. In Section V, the method of 

image dehazing with the depth information is described. In 

Section 6, we present and analyze the experimental results. 

Finally, we summarize this paper in Section 7.  

2. ATMOSPHERIC SCATTERING           

MODEL 
To explain the configuration of a hazy image, the atmospheric 

scattering model, which is proposed by McCartney in 1976 

[20], is generally used in computer vision and image 

processing. Narasimhan and Nayar [21], [22], [23], 

[24]further derive the model later, and the model can be 

expressed as follows: 

𝐼(𝑥)  =  𝐽(𝑥)𝑡 (𝑥) +  𝐴(1 −  𝑡 (𝑥)) (1) 

 

𝑡 (𝑥)  =  𝑒−𝛽𝑑(𝑥)   (2) 
Where x is the position of the pixel within the image, I is the 

hazy image, J is the scene radiance indicating the haze-free 

image, A is the atmospheric light, t is the medium 

transmission, β is the scattering coefficient of the atmosphere 

and d is the depth of scene. I, J and Aare all 3-D vectors in 

RGB space. Since I is known, the objective of dehazing is to 

estimate A and t, then restore J according to Equation (1).It is 

significance noting that the depth of the scene d is the most 

important  information. Since the scattering coefficient β can 

be regarded as a constant in homogeneous atmosphere 

condition [23], the average transmission t can be approximate 

easily according to Equation (2) if the depth of the scene is 

known. Moreover, in the ideal case, the range of d(x) is[0, 

+∞) as the scenery objects that show in the image can be very 

far away from the spectator, and we have: 

𝐼(𝑥) = 𝐴, 𝑑(𝑥) → ∞  (3)   

Equation (3) shows that the intensity of the pixel, which 

makes the depth tend to infinity, be able to stand for the value 

of the atmospheric light A. Note that, if d(x) is large enough ,t 

(x) tends to be very small according to Equation (2), and I(x) 

equals A approximately. Therefore, instead of calculating the 

atmospheric light A by Equation (3), we can approximation A 

by the following equation given a threshold dthresold :  

𝐼(𝑥)  =  𝐴, 𝑑(𝑥)  ≥  𝑑𝑡ℎ𝑟𝑒𝑠𝑜𝑙𝑑.  (4) 

We also see the fact that it is not hard to satisfy this 

constraint: d(x)>dthresold . In most cases, a hazy image taken 

outdoor has a far-away view that is kilometers away from the 

observer. In other words, the pixel belonging to the area with 

a far-away view in the image should have a very large depth 

dthresold . Assuming that every hazy image has a distantview, 

we have: 

𝑑 𝑥 ≥ 𝑑𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑥 ∈  𝑥|∀𝑦 ∶ 𝑑 𝑦 ≤ 𝑑 𝑥   (5) 

Based on this hypothesis, the atmospheric light A is given by: 

𝐴 = 𝐼 𝑥 , 𝑥 ∈  𝑥|∀𝑦 ∶ 𝑑 𝑦 ≤ 𝑑 𝑥  .  (6) 

On this condition, the job of dehazing can be further changed 

into depth information restoration. However, it is also a 

demanding task to obtain the depth map from a single hazy 

image. In the next part, present a novel color attenuation prior 

which is useful for restoring the depth information from a 

single hazy image directly.  

Multi-Scale Fusion (MSF) 

A. Input 

B. Weighting map 

C. MS fusion 

In the fusion process, the inputs are weighted by specific 

computed maps in order to preserve the most significant 

detected quality. Each pixel x of the output F is computed by 

summing the inputs 𝐼𝑘weighted by equivalent normalized 

weight maps𝑊𝐾: 

𝐹(𝑥)  = Ʃ𝑘𝑊
𝐾 𝑥 𝐼𝑘(𝑥)   (7) 

where𝐼𝑘symbolizes the input (k is the index of the inputs) that 

is weighted by the normalized weight maps     𝑊𝐾 .The 

normalization of the weights ensures that the intensity scale of 

the result is maintained in relatively the same scale as the 

inputs (since the sum of each pixel equals 1, Ʃ𝑘𝑊
𝐾(x) = 1). 

The youthful result (refer to figure 2) that directly implements 

this equation, introduces strong halos artifacts, mostly in the 

locations considered by strong transitions of the weight maps. 

To check such degradation problems, we have opted for the 

adapted solution that employs a classical multi-scale 

pyramidal modification strategy [25].It is also tested by 

several. 

 
Fig. 2. The naive blending that directly implements 

equation 12 introduces halo artifacts, most apparent in 

locations characterized by strong transitions of the weight 

maps. 

More recent edge preserving techniques (e.g. WLS [26]) but it 

cannot obtain significant improvement. However, recent 

superior methods need, in general, to pinch their parameters, 

as well as being more computationally concentrated. In this 

case, each input𝐼𝑘 , is decomposed into a pyramid by applying 

Laplacian operator at different scales. Likewise, for each 
normalized weight map 𝑊𝐾 , a Gaussian pyramid is 

computed.  Considering that both the Gaussian and Laplacian 
pyramids have the same number of levels, the combination 

between the Laplacian inputs and Gaussian normalized 
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weights is performed at each level independently, yielding the 

fused pyramid:  

𝐹𝑙(x) =Ʃ𝑘𝐺𝑙{𝑊
𝐾(x)}𝐿𝑙{𝐼𝑘 (x)}   (8) 

where l represents the number of the pyramid levels (default 

value of the number of levels is l=5) and L {I} is the 

Laplacian account of the input I while G{W} represents the 

Gaussian account of the normalized weight map of the W. 

This step is performed sequentially for each pyramid layer, in 

a bottom-up manner. The final haze-free image J is obtained 

by summing the contribution of the resulting inputs (levels of 

pyramid): 

J (x) =  Ʃ𝑙𝐹𝑙  (x)↑𝑑    (9) 

where↑𝑑 is the upsampling operator with factor d = 2𝑙−1. As a 

default characteristic, in this execution the contribution of all 

the three weight maps is equally distributed.  

3. COLOR ATTENUATION PRIOR 
As very small information about the scene structure is 

available it is very difficult to detect or remove the haze from 

a distinct image in computer vision,  In spite of this, the 

human brain can quickly recognize the hazy area from the 

natural scenery without any extra information. This motivated 

us to conduct a large number of experiments on a variety of 

hazy images to find the information and seek a new prior for 

single image dehazing. Interestingly, find that the brightness 

and the saturation of pixels in a hazy image vary sharply 

along with the change of the haze attention. It seems that the 

three properties (the brightness, the saturation and the 

difference) are prone to vary frequently in a sole hazy image 

according to this observation. Is this coincidence, or is there a 

fundamental reason behind this? To find the answer this 

question, first re-examine the process of imaging. In the haze-

free condition, the scene element reflects the energy that is 

from the lighting source (e.g., direct sunlight, diffuse skylight 

and light reflected by the ground), a portion of  energy is lost 

when it reaches the imaging system. The imaging system 

collects the inward energy reflected from the scene part and 

focuses it onto the image plane. Without the effect of haze, 

outdoor images are typically are of different colors. In hazy 

conditions, in contrast, the situation becomes more difficult. 

There are two mechanisms (the direct attenuation and the air 

light) in imaging under hazy conditions [22]. On one hand, the 

direct attenuation caused by the decrease in reflected energy 

leads to low intensity of the brightness. To recognize this, 

review the atmospheric scattering method. The term J(x)t(x) in 

Equation (1) is used for describing the direct attenuation.  

It reveals the fact that the intensity of the pixels within the 

image will reduce in a multiplicative way. So it turns out that 

the brightness tends to decrease under the control of the direct 

attenuation. On the other hand, the white or gray air light, 

which is produced by the scattering of the environmental 

illumination, enhances the brightness and minimizes the 

saturation. This can also be explained by the atmospheric 

scatter model. The rightmost term A (1−t (x)) in Equation (1) 

represents the effect of the air light. It can be deduced from 

this term that the effect of the white or gray air light on the 

experiential values is additive. Thus, caused by the air light, 

the brightness is increased while the saturation is decreased. 

Since the air light plays a more important role in most cases, 

hazy areas in the image are categorized by high brightness 

and low saturation. The denser the haze is, the stronger the 

influence of the air light would be. Since the concentration of 

the haze increases along with the change of the scene depth in 

general, make an assumption that the depth of the scene is 

positively correlated with the concentration of the haze and it 

gives: 

𝐷 𝑥 ∝ 𝑐 𝑥 ∝ 𝑣 𝑥 − 𝑠 𝑥 ,  (10) 

Where d is the scene depth, c is the concentration of the haze, 

v is the brightness of the scene and s is the saturation. We 

observe this statistics as color attenuation prior. Figure 2gives 

the statistical explanation of the color attenuation prior 

through the HSV color model.  

4. SCENE DEPTH RESTORATION 

4.1 The Linear Model Definition 
As the disparity between the brightness and the saturation can 

approximately represent the concentration of the haze, then it 

can create a linear model, i.e., a more precise expression, as 

follows: 

𝑑 𝑥 = 𝜃0 + 𝜃1𝑣 𝑥 + 𝜃0𝑠 𝑥 + 𝜀 𝑥 , (11) 

Where x is the position within the image, d is the scene depth, 

v is the brightness component of the hazy image, s is the 

saturation component, θ0, θ1, θ2 are the unknown linear 

coefficients, ε(x) is a random variable expressive the random 

error of the model, and ε can be regarded as a random image. 

Use a Gaussian density for ε with zero mean and variable σ2 

(i.e. ε(x) ∼N(0, σ2)). According to the property of the 

Gaussian distribution:  

𝑑 𝑥 ~𝑝 𝑑 𝑥  𝑥, 𝜃0, 𝜃1, 𝜃2, 𝜎2 = 𝑁(𝜃0 + 𝜃1𝑣 + 𝜃2𝑠, 𝜎2)
 (12) 

One of the most important advantages of this model is that it 

has the edge-preserving property. To show this, calculate the 

gradient of d in Equation (8): 

∇𝑑 = 𝜃1∇𝑣 + 𝜃2∇𝑠 + ∇𝜀  (13) 

Due to that σ can never be too large in practice; the value of 

ε(x) tends to be very low and close to zero. In this case, the 

value of ∇𝜀is low enough to be ignored.  

 

 

Fig. 3. The process of generating the training samples with 

the hazefree images. Left sub-figure: The haze-free 

images. Center sub-figure: The generated random depth 

maps. Right sub-figure: The generated hazy images. 

This further ensures that the depth information can be well 

recovered even near the depth discontinuities in the scene. In 

the following sections, use a simple and efficient supervised 

learning method to determine the coefficients𝜃0, 𝜃1, 𝜃2and the 

variable    𝜎2. 

4.2 Training Data Collection 
In order to discover the coefficients θ0, θ1 and θ2 exactly, the 

training data are needed. In this case, a training sample 

consists of a hazy image and its corresponding ground fact 

depth map. Unfortunately, the depth map is very complex to 

obtain due to the fact that there is no reliable means to 

calculate the depths in outdoor scenes. Current depth cameras 

such as Kinect are not able to obtain the accurate depth 

information. Inspired by Tang et al.’s method for preparing 

the training data [27], then collect the haze-free images from 

Google Images and Flickr and use them to create the synthetic 

depth maps and the equivalent hazy images for obtaining 

sufficient training samples.  
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C. Learning Strategy 

In the joint conditional concentration: 

𝐿 = 𝑝(𝑑 𝑥1 , … , 𝑑 𝑥𝑛 |𝑥1, … , 𝑥𝑛 , 𝜃0, 𝜃1, 𝜃2, 𝜎2) (14) 

wheren is the total number of pixels within the training hazy 

images, 𝑑(𝑥𝑛)is the depth of the nth scene point, and L is the 

likelihood. Let that the random error at each scene point is 

independent (i.e. 𝑝(𝜀1, … , 𝜀𝑛) = ∏▒〖i=1,...,np(εi))〗,it can 

rewrite Equation (11) as: 

𝐿 =  𝑝𝑑 𝑥𝑖 |𝑥𝑖 , 𝜃0, 𝜃1, 𝜃2, 𝜎2)𝑛
𝑖=1   (15) 

According to Equation (9) and Equation (12), it gives: 

𝐿 =  
1

 2𝜋𝜎2
𝑒−

𝑑𝑔𝑖−(𝜃0+𝜃1𝑣(𝑥𝑖)+𝜃2𝑠(𝑥𝑖))

2𝜎2𝑛
𝑖=1   (16) 

where 𝑑𝑔𝑖represents the ground truth depth of the ith scene 

point. So the problem is to find the optimal values of θ0, θ1, 

θ2, and σ to maximum L. For convenience, instead of 

maximizing the probability directly, we maximize the natural 

logarithm of the probability lnL. Therefore, the problem can 

be expressed as follows: 

arg𝑚𝑎𝑥𝜃0 ,𝜃1 ,𝜃2 ,𝜎 𝑙𝑛𝐿  =  𝑙𝑛  
1

 2𝜋𝜎2
𝑒−

𝑑𝑔𝑖−(𝜃0+𝜃1𝑣(𝑥𝑖)+𝜃2𝑠(𝑥𝑖))

2𝜎2  𝑛
𝑖=1

 (17) 

To solve the problem, first calculate the partial derivative of 

lnL with respect to σ and make it equal to zero: 

 
𝜕𝑙𝑛𝐿

𝜕𝜎
=

𝑛

𝜎
+

1

𝜎3
  𝑑𝑔𝑖 − (𝜃0 + 𝜃1𝑣(𝑥𝑖) + 𝜃2𝑠(𝑥𝑖)) 𝑛

𝑖=1 = 0

 (18) 

 

According to Equation (18), the maximum likelihood estimate 

for the variable σ2 is: 

𝜎2 =   𝑑𝑔𝑖 − (𝜃0 + 𝜃1𝑣(𝑥𝑖) + 𝜃2𝑠(𝑥𝑖)) 2𝑛
𝑖=1  (19) 

As for the linear coefficients θ0, θ1 and θ2 use the gradient 

descent algorithm to estimate their values. By taking the 

partial derivatives of lnL with respect to θ0, θ1 and θ2 

respectively, 

Algorithm 1 Parameters Estimation 

Input the training brightness vector v, the training saturation 

vector s, the training depth vector d, and the number of 

iterations t 

Output linear coefficient𝜃0, 𝜃1, 𝜃2, the variance 𝜎2 

Auxiliary functions: 

Function for obtaining the size of the vector: n=size (in) 

Function for calculating the square: out=square (in)  

Begin 

1:n=size(v); 

2: 𝜃0 = 0; 𝜃1 = 1; 𝜃2 = −1; 
3:𝑠𝑢𝑚 = 0;  𝑤𝑆𝑢𝑚 = 0;  𝑣𝑆𝑢𝑚 = 0; 𝑠𝑆𝑢𝑚 = 0; 
4: for iteration from 1 to t do 

5: for index from 1 to n do 

6: temp=𝑑 𝑖 − 𝜃0 − 𝜃1 ∗ 𝑣 𝑖 − 𝜃2 ∗ 𝑠 𝑖 ; 
7: 𝑤𝑆𝑢𝑚 = 𝑣𝑆𝑢𝑚 + 𝑡𝑒𝑚𝑝; 
8: 𝑠𝑆𝑢𝑚 = 𝑠𝑆𝑢𝑚 + 𝑣[𝑖] ∗ 𝑡𝑒𝑚𝑝; 
9: 𝑠𝑆𝑢𝑚 = 𝑠𝑆𝑢𝑚 + 𝑠[𝑖] ∗ 𝑡𝑒𝑚𝑝; 
10: 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑠𝑞𝑢𝑎𝑟𝑒(𝑡𝑒𝑚𝑝); 
11: end for 

12: 𝜎2 = 𝑠𝑢𝑚/𝑛; 
13: 𝜃0 = 𝜃0 + 𝑤𝑆𝑢𝑚; 𝜃1 = 𝜃1𝑣𝑆𝑢𝑚; 𝜃2 = 𝜃2 + 𝑠𝑆𝑢𝑚; 
14: end for 

End 

 

It can obtain the following expressions: 

𝜕𝑙𝑛𝐿

𝜕𝜃0
=

1

𝜎2
  𝑑𝑔𝑖 − (𝜃0 + 𝜃1𝑣(𝑥𝑖) + 𝜃2𝑠(𝑥𝑖)) 𝑛

𝑖=1       (20) 

𝜕𝑙𝑛𝐿

𝜕𝜃1
=

1

𝜎2
 𝑣(𝑥𝑖) 𝑑𝑔𝑖 − (𝜃0 + 𝜃1𝑣(𝑥𝑖) + 𝜃2𝑠(𝑥𝑖)) 𝑛

𝑖=1    (21) 

𝜕𝑙𝑛𝐿

𝜕𝜃2
=

1

𝜎2
 𝑠(𝑥𝑖) 𝑑𝑔𝑖 − (𝜃0 + 𝜃1𝑣(𝑥𝑖) + 𝜃2𝑠(𝑥𝑖)) 𝑛

𝑖=1  (22) 

The expression for updating the linear coefficients can be in 

brief expressed by: 

𝜃𝑖 = 𝜃𝑖 +
𝜕𝑙𝑛𝐿

𝜕𝜃𝑖
  𝑠. 𝑡. 𝑖𝜖 0,1,2    (23) 

It is worth noting that the expression above is used for 

iterating dynamically, and the notation: = does not express the 

mathematical equality, but means that setting the value of θi 

in the left term to be the value of the right term. The process 

for learning the linear coefficients θ0, θ1, θ2 and the variable 

σ2 is shown in Algorithm 1. 

4.3 Estimation of the Depth Information 
As the link among the scene depth d, the brightness v and the 

saturation s has been recognized and the coefficients have 

been estimated, then it can restore the depth map of a given 

input hazy image according to Equation (8).However, this 

model may fail to work in some particular situations. For 

example, the white objects in an image are frequently with 

high values of the brightness and low values of the saturation. 

Therefore, the model tends to consider the scene objects with 

white color as being far-away. Unluckily, this 

misclassification will result in inaccurate estimation of the 

depth in some cases. In the white geesein the image are the 

regions for which the model can barely handle, and these 

regions are wrongly estimated with high depth values in the 

depth map. To overcome this problem, need to consider each 

pixel in the neighborhood. Based on the hypothesis that the 

scene depth is locally constant, and then process the raw depth 

map by: 

𝑑𝑟 𝑥 = 𝑚𝑖𝑛 min𝑦∈𝑟(𝑥) 𝑑(𝑦)  (24) 

Where r (x) is an r ×r neighborhood centered at x, and 𝑑𝑟is 

the depth map with scale r. The new depth map d15 can well 

handle the geese regions. However, it is also obvious that the 

blocking artifacts show in the image. To process the depth 

map, use the guided image filtering [28]to smooth the image. 

The final restored depth map of the hazy image can be seen, 

the blocking artifacts. 

5. SCENE RADIANCE RECOVERY 

5.1 Estimation of the Atmospheric Light 
The main idea of estimating the atmospheric light explained 

in Section II. In this section, explain the method in more 

detail. As the depth map of the input hazy image has been 

improved, the allocation of the scene depth is known. Bright 

regions in the map stand for distant places. According to 

Equation (6), pick the top0.1 percent brightest pixels in the 

depth map, and select the pixel with maximum intensity in the 

corresponding hazy image I among these brightest pixels as 

the atmospheric light A 

5.2 Scene Radiance Recovery 
Now that the depth of the scene d and the atmospheric light 

Aare known, it can estimate the medium transmission t simply 

according to Equation (2) and improve the scene radiance Jin 

Equation (1). For ease, rewrite Equation (1) as follows: 

𝐽 𝑥 =
𝐼 𝑥 −𝐴

𝑡(𝑥)
+ 𝐴 =

𝐼 𝑥 −𝐴

𝑒−𝛽𝑑 (𝑥)
+ 𝐴  (25) 
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For avoiding producing too much noise, limit the value of the 

transmission t (x) between 0.1 and 0.9. So the final function 

used for restoring the scene radiance J in the method can be 

expressed by: 

𝐽 𝑥 =
𝐼 𝑥 −𝐴

𝑚𝑖𝑛  𝑚𝑎𝑥  𝑒−𝛽𝑑 (𝑥),0.1 ,0.9 
+ 𝐴   (26) 

where Jis the haze-free image. Figures (4) show some 

finishing results of dehazing of the given method. Note that 

the scattering coefficient β, which can be regarded as a 

constant [23] in homogeneous regions, the ability of a unit 

volume of atmosphere to scatter light in all directions. In other 

words, β determines the intensity of dehazing indirectly. 

Therefore, a moderate β is essential when dealing with the 

images with dense-haze regions. In most cases, β = 1.0 is 

more than enough. 

6. EXPERIMENTS 
In order to verify the usefulness of the given dehazing 

method, test it on various hazy images and compare with He 

et al.’s [17] method. All the algorithms are implemented in 

the MatlabR2012a environment on a P4-2.3GHz PC with 

4GB RAM. The parameters used in the given method are 

initialized as follows: r = 15, β = 1.0, θ0 = 0.121779, 

 

 
Fig. 4. Qualitative comparison of different methods on real-world 

images (a) The hazy images (b) Tarel et al.’s results (c) Nishino et 

al.’s results(d) He et al.’s results (e) Meng et al.’s results (f) multi-

scale methods result 

7. DISCUSSIONS AND CONCLUSION 
In this work the linear CAP based dehazing method creates a 

linear model for the scene depth of the hazy image. The 

supervised learning method is used for the parameter learning 

of this model through which the depth information can be well 

recovered. By means of the depth map obtained by the given 

method, the scene radiance of the hazy image can be 

recovered effortlessly. In a fusion-based approach, the first 

fusion based strategy that is able to resolve fog and haze 

problems using only one degraded image. By choosing 

appropriate weight maps and inputs, a multi-scale fusion 

strategy can be used to efficiently dehaze images. The MSF 

method is faster than existing single image dehazing strategies 

and yields precise results. In future work these methods may 

be tested on videos. 
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