
International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.10, May 2016

32

Improvised Version: Fully Homomorphic Encryption

Avinash Navlani
Assistant Professor,

School of Future Studies and Planning,
DAVV, Indore India

Pallavi
Masters in Technology,

School of Future Studies and Planning,
DAVV, Indore India

ABSTRACT
Homomorphic encryption schemes are malleable by design. In

the field of homomorphic encryption schemes have made it

possible to implement a variety of schemes using different

techniques and programming languages. In this paper, we

choose the model to increase the efficiency and security.

Basically this technique is a method of encryption that

combines two or more encryption technique and usually

includes a combination of symmetric and asymmetric (public-

key) encryption to take benefit of the strengths of each type of

encryption. Fully homomorphic encryption schemes, we

observe that the main bottleneck for this scheme is slow

running speed and large cipher text.

Keywords
Cryptography, Homomorphic Encryption, Symmetric and

Asymmetric Encryption.

1. INTRODUCTION
Information Security, is defined as safe-guarding an

organisation data from unauthorised access as modification to

ensure its availability, confidentiality and integrity. “The

protection of information whether in storage processing as

transit and against the denial of service to unauthorised users

including those measures necessary to detect, document and

counter such threads.”

U.S.National Information System Security

The development of homomorphic encryption provides a

better approach to build secure function evaluation protocols.

This encryption scheme allows computation directly on

encrypted data. However, the community has grown to trust

the security of these schemes and, recently the work of Gentry

and others demonstrate that, when carefully employed such

homomorphic properties can be quite valuable. A number of

recent specific applications such as data aggregation in

distributed network [3], electronic voting [4], biometrics [5]

and privacy preserving data mining have led to reignited

interest in homomorphic schemes.One of the most significant

developments in cryptography in the last few years has been

the introduction of the first fully homomorphic encryption

scheme by Gentry [7].

2. HOMOMORPHIC ENCRYPTION
In recent computing scenarios clients are trusted (but weak),

while computationally strong servers are untrusted as we do

not exhibit full control over them. How to outsource

(delegate) the computation? What about privacy of the

outsourced computation? What about privacy of the

outsourced computation? For example, how to outsource

computing on medical data, which must be kept confidential

of all times? Standard solution would be to encrypt the data:

this perfectly solves any privacy issues. However,

requirements for standard encryption schemes (in particular,

non-malleability) also do not let us achieve the wanted

functionality: we cannot perform any computations on the

encrypted data. Thus, problems with traditional encryption are

as data needs to be decrypted whenever we have to perform

any computation on the data. What if Party A does not trusts

Party B, with its confidential data.

A solution to this problem is homomorphic encryption, Party

B does not requires the secret key for answering this query

from A. Homomorphic is a Greek word for “same structure”.

It permits computing on encrypted data. That is, the client can

encrypt his data x and send the encryption Enc(x) to the

server. The server can then take the cipher text Enc(x) and

evaluate a function f on the underlying x obtaining the

encrypted result Enc(f(x)). The client can decrypt this result

achieving the wanted functionality, but the server learns

nothing about the data that he computed on [8].

According to us, Homomorphic encryption schemes are

malleable by design. In other words, in some circumstances it

may be viewed as a feature that anyone can transform an

encryption of m into a valid encryption of f(m) without

necessarily learning m. Such schemes are known as

homomorphic encryption scheme.

3. FULLY HOMOMORPHIC

ENCRYPTION
Fully homomorphic encryption is an encryption scheme that

allows specific functions to be performed on the cipher texts

and obtaining an encrypted result, which is when decrypted to

obtain a result as if the operation was originally performed on

the plain texts. The term homomorphic encryption has come

from the fact that even after performing operation on the

encrypted data, the scheme is able to retain the original

property of the original data. Literally, Homomorphic means

the same property. Thus homomorphic encryption is a scheme

that keeps the original properties of the plain text, even though

it allows operation on data.

The concept of Fully Homomorphic Encryption (FHE) was

introduced by Rivest, Adleman, and Dertouzous soon after the

invention of RSA algorithm in 1978, originally as a method to

allow expensive computation to be performed by any

untrusted third party. Rivest et.al [9] named it privacy

encryption and showed RSA algorithm [10] to be

multiplicative homomorphic encryption scheme-i.e., given a

RSA public key pk=(N,e) and cipher texts Ci=Mi
emod N, one

can efficiently compute ΠiCi=(ΠiMi)
e mod N, which is

eventually a cipher text that encrypts the product of the

original plaintexts. With this invent, they asked a basic

question: What can one do with a scheme that is fully

homomorphic. The answer to this question is that one can

compute arbitrary number of computations on the encrypted

data without the need to decrypt it anywhere. This is a

desirable feature in modern computing system where security

and privacy of various user data is an area of concern and with

the inception of cloud computing, this technique has gain lots

of importance in terms of research and development. The

application and prospects of homomorphic encryption is

enormous as it can be used to develop secure voting systems,

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.10, May 2016

33

Sender

Receiver

collision resistant hash function, and searchable encrypted

database and enable widespread use of cloud computing by

ensuring the confidentially of the data stored and processed on

the server.

4. IMPROVING FULLY

HOMOMORPHIC ENCRYPTION

SCHEMES
Reason behind choosing this model is the security and

efficiency. Most interesting thing in this technique is the

combination of two different techniques. Basically this

technique is a method of encryption that combines two or

more encryption technique and usually includes a combination

of symmetric and asymmetric (public-key) encryption to take

benefit of the strengths of each type of encryption. Symmetric

encryption has the performance advantage and therefore is the

common solution for encrypting and decrypting performance-

sensitive data, such as an online data stream. However,

symmetric encryption has a downside the cryptographic key

needs to be known to both the sender and receiver of

encrypted data, and the exchanging of the key over an

insecure channel may cause security risks. On the other hand,

asymmetric or public-key encryption provides better security

in that the cryptographic key required for decrypting data does

not have to be shared with other parties. Here we show a small

description of the proposed architecture shown in figure, as

proposed by Authors. In the proposed architecture user input

secret integers and secret key. This secret integer is encrypted

by proposed encryption algorithm with the help of secret key

to produced cipher text. At the same time secret key is also

encrypted by the public RSA key and combine cipher integers

and cipher key and send to other end. At other end receiver

receive cipher text and cipher key. Initially receiver first

decrypt cipher key by RSA private key and then decrypt

cipher text by proposed algorithm with the help of secret key

to get original secret integer.

Fig: Architecture of Proposed Encryption and Decryption

These are the following parameters:

 β is representing for arbitrary bit length of secret

input

 ¥ is representing for arbitrary bit length of secret

key

 µ is representing for summation of all the ASCII

value of characters in arbitrary length key

 α is representing for generated Pseudo Random

Number

 π is representing for the containing bits in matrix

 £ is representing for cipher text of arbitrary bit

length of secret input

 Ω representing for cipher text of arbitrary bit length

of secret key

Proposed work takes two things from user. First is input and

another is secret key of arbitrary length. With the help of

secret key, user is producing a pseudo random number by

using following steps.

With this help of this pseudo number, proposed work will

generate it‟s new secret key.

Secret Text (β)

Enc (β, ¥) Secret Key (¥)

Cip (£)

Cip (Ω)

Enc (¥, PK)

Com (£, Ω)

Secret Text (β)

Dec (£, ¥) Secret Key (¥)

Cip (£)

Cip (Ω)

Dec (Ω, PrK)

Com (£, Ω)

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.10, May 2016

34

Fig: Re-generating Secret Key using Pseudo Number

With the help of this secret key, proposed work will encrypt

the input contents. This is shown in figure 3.

5. RESULTS
For the tests, a laptop with a Core i5 m520@2.4GHz CPU and

2GB of Ram memory was used. The proposed system has run

hundred times approximately. In each time, same integer

value are respectively encrypted and decrypted by “Proposed

system” by copying them. Size of the selected key was very

in each time. Finally, the outputs of the proposed system are

execution time which is noted in numeric form and showing

in table 1 to 4. Table 1 shows the concrete parameters used by

authors in his work. Those parameters were chosen to mitigate

certain kinds of attacks against the cipher text.

5. Repeat the step for all characters of (β)

a) Input secret text (β) of arbitrary length.

b) Take 16 characters of β

c) Arrange β and ¥ in matrix of 4X4 in row major order.

d) π = β XOR ¥

e) Column shifting of π (select α and swap it with next to next column)

f) Transpose of matrix π

g) Row Shifting of matrix π (Select α and swap it with next to next row)

h) Results is a cipher text (£) of first 16 characters of β.

i) Repeat a to g till β != NULL.

4. Key Generation (¥)

a) Input secret key of (¥) arbitrary length key.

b) If length (¥) < 16, “XOR” all the characters with the characters at position α ahead to it.

c) Append the results with last key

d) Go to step b).

e) At last, select first 16 characters of the resultant key.

1. Input secret key of (¥) arbitrary length key.

2. Generate a Pseudo Random Number (α)

a) Add all the ASCII value of characters in arbitrary length key

 µ = ∑ ASCII (¥)

b) Calculate modulo of 4 µ

 α= µ (mod) 4

3. If the length of β is not multiple of 16 then making it multiple of 16 by padding „\0‟ at the end

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.10, May 2016

35

Table 1: Parameter Value

Key Character ¥ β µ Α £ Ω

Very Toy 48 16 8 2 16 96

Toy 64 32 9 2 32 128

Small 80 64 10 2 64 160

Medium 96 112 10 2 112 192

Large 128 144 10 2 144 256

Table 2 shows the obtained times for the key generation and

encryption and decryption time of key by proposed algorithm

described by authors. “The Proposed Crypto System” has

been implemented on a number of integers varying sizes of a

wide range. Table 3 shows, generating pseudo random number

time by proposed algorithm. Table 4 is showing encryption

and decryption time of integers by proposed algorithm.

Table 2: Execution Times in Nano Second

Key Character ¥ Key Gen Time

Encryption

Time

Decryption

Time

Very Toy 48 0.000012ns 0.000023ns 0.000023ns

Toy 64 0.000014ns 0.000044ns 0.000044ns

Small 80 0.000014ns 0.000044ns 0.000044ns

Medium 96 0.000015ns 0.000053ns 0.000053ns

Large 128 0.000032ns 0.000067ns 0.000067ns

Graph 1: Time Analysis of Key in Nano Second

Table 3: Time Analysis of Pseudo Random Number Generation

Key Character ¥

Pseudo Random Number Generation

Time

Very Toy 48 0.000017ns

Toy 64 0.000021ns

Small 80 0.000026ns

Medium 96 0.000035ns

Large 128 0.000047ns

0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008

Very Toy Toy Small Medium Large

Time Analysis ok Key ¥

Key Gen Time Encryption Time Decryption Time

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.10, May 2016

36

Graph 2: Time Analysis of Pseudo Random Number Generation

Table 4: Time Analysis of Encryption and Decryption of Integers

Key Character ¥ β

Encryption

Time(ms)

Decryption

Time(ms)

Very Toy 48 48 0.000031 0.000031

Toy 64 64 0.000037 0.000037

Small 80 80 0.000043 0.000043

Medium 96 96 0.000045 0.000045

Large 128 128 0.000053 0.000053

6. CONCLUSION
In this paper, a fully homomorphic encryption scheme is

described that uses only simple integer arithmetic. The

primary open problem is to improve the efficiency of the

scheme. The choice of dot net as the programming language

in this project facilitated the coding in some aspects, for

instance, operations with lists are simple to implement using

dot net native resources. The fully homomorphic encryption

supports arbitrary number of addition and multiplication on

the cipher texts, in this paper the number of addition and

multiplication are decreased thus it reduces the time.

7. REFERENCES
[1] E.Mykletun, J.Girao and D.Westhoff. Public key based

Cryptoschemes for Data Concealment in Wireless Sensor

Networks. In IEEE, Int. Conference on Communication

ICC, Istanbul, Turkey June 2006.

[2] Aggelos Kiayias, Moti Yung, Tree-Homomorphic

Encryption and Scalable Hierarchical Secret Ballot

Elections. Financial Cryptography 2010: pp, 257-271.

[3] An application of the Goldwasser-Micali Cryptosystem

to Biometric Authentication, Information Security and

Privacy, LNCS 4586, pp. 96-106, 2007.

[4] C.Gentry, Fully homomorphic encryption using ideal

lattices. Symposium on Theory of Computing (STOC),

2009, pp. 169-178.

[5] Vinod Vaikuntanathan, Lecture on Computing on

Encrypted Data on Sep 09‟13.

[6] Paillier Pascal. “Public-key Cryptosystems Based on

Composite Degree of Residuosity Classes”.

EUROCRYPT Springer. pp. 223-238, 1999, doi:

10,1007/3-540-48910-X_16.

[7] T. ElGamal A public key cryptosystem and a signature

scheme based on discrete algorithms. In Advances in

Cryptology- CRYPTO ‟84, Volume 196 of Lecture

Notes in Computer Science, pages 10-18. Springer –

Valag, 1985.

[8] S.Goldwasser and Silvio Micali. Probabilistic encryption

and how to play mental poker keeping secret all partial

information. In STOC, pages 365-377. ACM, 1982.

[9] R.Rivest, A.Shamir and L.Aldeman. A method for

obtaining Digital Signatures and Public Key Crypto

systems, Communication of the ACM 21 (2) : 120-126,

1978.

[10] R.Rivest, L.Adleman and M.Dertouzos. On data banks

and privacy homomorphism. In Foundations of Secure

Computation, p.p.- 169-177. Academic Press, 1978.

0

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

0.000035

0.00004

0.000045

0.00005

Very Toy Toy Small Medium Large

Pseudo Random Number Generation Time

IJCATM : www.ijcaonline.org

