
International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.12, May 2016

1

Proposed Semi-Distributed Framework to Enhance Web

Performance

Payal Beniwal
Research Scholar /MMICT&BM

Maharishi Markandeshwar University
Mullana, Ambala

Atul Garg
Associate Professor/MMICT&BM

Maharishi Markandeshwar University
Mullana, Ambala

ABSTRACT
Server load balancing is a technique of circulating client

requests across a group of servers. Static and Dynamic load

balancing methods are used to distribute the workload equitably

over every node of the system. Dynamic load balancing is

adaptive in nature and performs load distribution at run time,

which makes it more suitable for systems where workload is

unpredictable, as compared to static load balancing methods.

Two approaches namely- Completely Distributed and a

proposed approach Semi- Distributed are tested against two

applications – database and ftp. Efficiency of models is tested

using various parameters of FTP, IP, and TCP. Simulation

results show that semi-distributed method provides better

system efficiency and performance.

Keywords
Completely-Distributed, Semi-Distributed, OPNET, FTP, IP,

TCP.

1. INTRODUCTION
To increase the efficiency of network multiple servers are

deployed connected to each other to form a server farm. Client

request is transferred to one of the back end server in the server

farm. It replies to client request without the client ever knowing

about the internal distribution [22]. The process of distributing

the client request among servers is performed by load balancing

technique. Load balancing improves performance by

transferring requests from heavily loaded to lightly loaded

nodes. Load balancing is described as a technique of dividing

and circulating tasks to all nodes of the system so that more

jobs can be served and the system can perform efficiently [3]. It

also provides the features of bottleneck removal and system

failover [16]. A load balancing method should be general and

transparent to the applications, also it should provide minimum

overhead to the system [19]. In general Load Balancing

mechanism is divided in two categories: Static and Dynamic.

Static Load Balancing is performed by considering

predetermined behavior of the system. Whereas Dynamic Load

Balancing considerers current state of the system [15]. In

Dynamic Load Balancing work load is distributed among nodes

at run time. Dynamic approach adaptive in nature i.e. it can be

modified as the state of system changes. Applications where

workload is unpredictable or change during execution dynamic

methods are implemented to achieve better performance [15].

Dynamic load balancing can be achieved in three forms:

Centralized, Completely-Distributed and Semi-Distributed.

In Centralized approach load balancing is performed by one

single node and all other nodes interact with this central node.

In Completely-Distributed approach the responsibility of load

balancing is shared by all nodes either in co-operative form or

non co-operative form. Best suited in environment where each

node is given chance to act alone and lesser interaction with

others [15]. There is no central node so failure of one node does

not shut down the whole system. Also the condition of

bottleneck does not arise in this form. The major drawback of

this approach is the overhead caused by the large amount of

communication present between the nodes of the system. This

disadvantage sometimes leads to the delay in response to the

client request and loss of the data in between communication of

nodes.

Semi- Distributed on the contrary is combination of both

Centralized and Completely Distributed approaches [3]. In this

approach all nodes are divided in a number of clusters. Each

cluster has a central node interacting with its members and

performing the load balancing activity. This central node is also

connected to the central node of other clusters to achieve

resource sharing and load distributing. Best suited in

environment where there is large number of nodes in the

system. The communication overhead is more than centralized

approach but is much lesser than completely distributed

approach.

This paper presents the comparison of the Completely-

Distributed and Semi-Distributed approaches of load balancing.

Both approaches have equal number of client and server nodes.

Two applications – Database and ftp are created to test the

models. Both models are simulated and compared on global

level and individual statistic level. Parameters used for

comparison are- FTP download response time, FTP upload

response time, traffic dropped, delay (TCP). The section 2

describes the proposed model. Simulation outputs are shown in

section 3 and comparative results are in section 4. Conclusion is

presented in section 4.

2. PROPOSED MODEL
Distributed approach offered various advantages such as

minimum storage, maximum resource utilization and

continuous availability of system. For large systems consisting

of thousands of nodes the centralized and completely-

distributed approaches suffer from major drawbacks listed

below [3]:

 In completely distributed approach the random arrival of

load does not provide accurate state of the whole system.

Load balancing decisions made by nodes are probability

based which sometimes lead to poor performance of the

system.

 In completely-distributed approach communication delay

can cause a situation where a request keeps on migrated

from one node to another without being executed.

 With the increase in number on nodes in system the

communication traffic will also increase. This may result

in increase in response time and hence will degrade the

efficiency of system.

 The increase in number of nodes in system will result in

control overhead and can further lead to poor load

balancing decisions.

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.12, May 2016

2

 As the number nodes increase the storage capacity for

maintain their information will also increase in

completely-distributed system.

 In case of centralized approach the central node can

become the point of bottleneck and hence will decrease the

throughput.

 In centralized approach the failure of central node can stop

the working of whole system.

 With the increase in size of system the overhead of the

load balancing algorithm can delay the execution of the

task.

The proposed Semi-Distributed system approach avoids the

major drawbacks of bottleneck and over communication. In

Semi-Distributed policy nodes are divided in equal clusters.

Each cluster adopts a centralized approach where central nodes

take charge of load balancing within the cluster. Clusters

together adopt a distributed approach and exchange information

with each other to achieve global Load Balancing. In the

proposed approach central node of each cluster performs the

following functions:

 Assigns task to individual nodes of the cluster.

 Maintains the load status of all nodes within the clusters

and other neighboring clusters.

 Transferring of load to other clusters if needed.

Figure-1 illustrates the logical view of the proposed approach.

Request sent by the client passes through the communication

network and reaches to the central node of the cluster. The

central node after checking its state information forwards

request to its subordinate nodes. In case the cluster does not

have the required resources for execution of the request it

communicates with its neighboring clusters and passes on the

client request to them.

 RESPONSE REQUEST

RESPONSE/ REQUEST

PASS

 EXECUTION

Figure-1 Logical view of Semi-Distributed Approach

Working algorithm of proposed Semi-Distributed approach is

given in Figure-2 below.

 Step 1: Client sent request

 Step 2: Request accepted by process distribution

module

 Step 3: Forwarded to cluster

 Step 4: Central node receives request

 Step 5: Status of subordinate node validated

 Step 6: If subordinate node is underloaded,

 go to step 8

 Else, repeat step 5

 Else If, go to step 7

 Step 7: Transfer load to neighboring cluster,

 go to step 4

 Step 8: Execute the request

 Step 9: Respond back to client

Figure-2 Algorithm of Proposed Semi-Distributed

Approach

Client sent the request through internet services. The request is

firstly received by the process distribution module. This module

acts as an interface between client and server. The distribution

module maintains the state information table of all servers on

the network. After verification of the current status of the

clusters, the client request is forwarded to the central node of

the cluster. The central node also maintains the state

information table of all its subordinate nodes. After checking

the load status of subordinate nodes, central node passes on the

client request to a suitable node for execution. In case the

central node finds out that all its subordinate nodes are in

overloaded condition than, the central node transfer the request

to another neighboring cluster node.

In the proposed approach two levels of communication is

present- firstly between central node and its subordinate nodes,

secondly between central nodes of neighboring clusters.

The proposed approach reduces the communication overhead

and avoids the condition of congestion in network. Flowchart of

the proposed approach is given in Figure-3.

 YES

 NO

 NO

 YES

 Figure-3 Flowchart of Semi-Distributed Approach

To further check the advantages of semi-distributed approach

over completely distributed approach, two models are designed

using OPNET Riverbed Modeler Academic Edition (version-

17.5.A PL6). The OPNET Modeler is used to design protocols,

devices and network behaviors by using the special purpose

CLIENT

COMMUNICATION NETWORK

CENTRAL

NODE

CENTRAL

NODE

N1 N2

N3
N3

N2 N1

All Nodes

Checked?

Client

Received by Cluster

Status Checked

Execute & Reply

Exit

Underloaded?

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.12, May 2016

3

modeling functions. It provides different levels of modeling

depending on the necessities and requirements of the

simulation. It consists of step by step GUI (graphical based

interface) based guide to establish an overall environment

called as project. Within a project different Approaches can be

developed and their performance can be analyzed using

simulation. It’s easy to use environment gives it the preference

from other such modelers.

In the modeler two Approaches are created- Completely-

Distributed and Semi-Distributed. Both Approaches have same

list of parameters and their corresponding values are also same.

The list and the values are shown in table 1 below.

Table 1: List of Parameters

PARAMETER VALUE

Scale Office

Size 100m X 100m

Client Node 26units

(eth4_slip4_multihomed_client_node)

Server Node 09units

(IBM_p650_6m2_1450_8CPU_node)

Central Node 3C_SSII_1100_3300_4s_ae52_e48_ge3

switch

Load Balancer Fd_server_e24_fe2

Using the above parameters the two Approaches are created.

Figure-4 shows the Completely-Distributed scenario and

Figure-5 shows the Semi-Distributed scenario respectively.

Figure-4 Completely-Distributed Scenario

Figure-5 Semi-Distributed Scenario

To measure the efficiency of both the Approaches two

applications namely – Database and ftp are created. Both

applications have property of heavy load browsing. Both the

applications are executed simultaneously on the both models.

Using the application configuration command the attributes of

both applications are set .The list of attributes and their

corresponding set values set are given in table 2.

Table 2: Application Configuration

ATTRIBUTE VALUE

Operation mode Simultaneous

Start Time (sec) Uniform(100,110)

Duration (sec) End of Simulation

Inter Repetition Time (sec) Constant(300)

Number of Repetition Unlimited

Repetition pattern Serial

The Approaches are compared to each other on the basis of

download response time (sec) of an application, upload

response time (sec) of an application, traffic dropped by the

application during the communication between the client and

server node and lastly the TCP delay in network. The

simulation results are shown in next section.

3. SIMULATION
The proposed approaches are simulated for 20 minutes each and

with 150 values per statistics. Four graphs (Figure 6 to Figure

9) show the result of both approaches in combination. Average

of result is taken to show the difference in values for both

approaches. Red line in figures denotes the semi-distributed

approach and blue line represents the completely-distributed

approach.

3.1 FTP Download Response Time
It is the time elapsed between sending a request and receiving

the response packet. Every response packet sent from server to

an FTP application is included in this statistics. Figure-6 shown

below is the graph showing the statistics of FTP download

response time (sec) of both Approaches After running the

simulator for 19 min in both cases the response time for

distributed came out to be 0.160 sec and that of semi-distributed

is 0.195 sec.

Figure -6 FTP Download Response Time

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.12, May 2016

4

3.2 FTP Upload response Time
It is defined as the time elapsed between sending a file and

receiving the response. The response time for responses sent

from any server to an FTP application is included in this

statistic. Simulation results show that Semi distributed approach

results in better upload response time as compared to

completely distributed approach. After simulating the two

approaches for 20 min the average FTP upload response time of

semi-distributed is 0.286 secs and that of completely distributed

is 0.290 secs. Figure-7 presents the comparison of upload

response time (sec) of both Approaches

Figure- 7 FTP Upload Response Time

3.3 IP Traffic Dropped
Traffic dropped (packets/sec) is defined as the number of IP

datagram’s dropped by all nodes in network across all the IP

interfaces. The reasons of dropping can be any one of the

following:

 Insufficient space in central processors queue.

 Insufficient space in processors buffer.

 Maximum number of hops exceeded by an IP

datagram.

Average traffic drop down rate for completely distributed is

2.950 secs and that for semi-distributed is 2.918 secs. Figure-8

shows the simulation result graph of both the approaches

showing average traffic dropped during the communication

between client and server nodes.

Figure-8 IP Traffic Dropped

3.4 TCP Delay
It is computed form the time an application request is

dispatched from source TCP layer to the time it is collected by

the TCP layer of destination node. When simulated for 20 min

the average delay rate of distributed is 0.026 secs whereas that

of semi-distributed is 0.022 secs. Lesser will be the delay faster

will be the packet delivery which results in client satisfaction.

Figure-9 below shows the graph of TCP delay. It is defined as

the delay of packets received by TCP layers in the complete

network for all connections. .

Figure-9 TCP Delay

4. RESULTS
Table 3 shows the statistical values obtained during the

simulation of two approaches. Figure 10 shows the comparative

chart of values obtained during simulation of both approaches.

Table 3: Simulation Values of Semi-Distributed and

Completely Distributed Approaches

Parameters Semi-Distributed Completely

Distributed

Traffic Dropped 2.918 packets/sec 2.950 packets/sec

TCP Delay 0.022 sec 0.026 sec

FTP Download

Response Time

0.195 sec 0.160 sec

FTP Upload

Response Time

0.286 sec 0.290 sec

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.12, May 2016

5

Figure-10 Comparison Chart of Semi-Distributed and Completely Distributed Approaches

5. CONCLUSION
In this paper two approaches of dynamic load balancing i.e.

Completely-Distributed and Semi-Distributed are modeled and

simulated in OPNET Riverbed Modeler. Both models are

compared to each other on FTP, IP, TCP parameters. The graph

in Figure-10 show the simulation results of proposed and

traditional approach. The proposed Semi-Distributed approach

gives better performance in FTP upload response time and in

FTP download response time completely distributed shows

better results. TCP delay in Semi-Distributed approach is less as

compared to completely distributed, which results in better user

satisfaction. Due to congestion problem completely distributed

approach drops more data packets as compared to proposed

semi-distributed approach. Further, it can be concluded that

proposed approach giver better performance as compared to

traditional approach. In future the proposed semi-distributed

approach can be modified in order to get better download

response time. The hardware implementation of proposed

approach can be studied further.

6. REFERENCES
[1] Abubakar, Haroon Rashid and Usman, “Evaluation of

Load Balancing Strategies”, National Conference on

Emerging Technologies, 2004.

[2] Ali M.Alakeel, “A Fuzzy Dynamic Load Balancing

Algorithm for Homogeneous Distributed Systems”, World

Academy of Science, Engineering and Technology, vol.6,

2012.

[3] Ali M.Alakeel, “A Guide to Dynamic Load balancing in

Distributed systems”, IJCSNS, vol.10 No.2, 2012.

[4] Asser and Charles, “Design, Implementation, and

Performance of a Load Balancer for SIP Server Clusters”,

IEEE/ACM transactions on networking, June 2012.

[5] Atul and Anil, “Portable Extended Cache Memory to

Reduce Web Traffic”, International Journal of Engineering

Science and Technology, Vol.2 No.9 2010.

[6] Atul and Dimple, “A Comparison and Analysis of Various

Extended Techniques of Query Optimization”, IJICT vol.3

No.3, 2012.

[7] B. Narendran, Sampath Rangarajan, and Shalini Yajnik,

“Data distribution algorithms for load balanced fault-

tolerant Web access”, In Proc. 16th IEEE Sympos. on

Reliable Distributed Systems, pp 97–106, 1997.

[8] Bryhni, E. Klovning and O. Kure, “A Comparison of Load

Balancing Techniques for Scalable Web Servers”, IEEE

Network pp 58-63, July/August 2000.

[9] Cardellini, Colajanni, M., and Yu, “Dynamic load

balancing on web-server systems”, IEEE Internet

Computing vol.3 No.3 pp 28–39,1999

[10] Daniel and Anthony, “Algorithmic Mechanism Design for

Load balancing in Distributed Systems”, IEEE Trans. on

Systems, Man and Cybernetics”, vol.34, No.1, 2004.

[11] Dimple Juneja and Atul Gar, “Collective Intelligence

based Framework for Load Balancing of Web Servers”,

IJICT, vol. 3 No.1, 2012.

[12] Eager, D.L, E.Lazowska and J. Zahorjan, “Adaptive load

sharing in homogeneous distributed systems”, IEEE Trans.

Software Eng. vol.12 pp 662-673, 1986.

[13] F. Arlitt and C. L. Williamson, “Internet Web Servers:

Workload Characterization and Performance

Implications”, IEEE Trans. Networking vol.5 No. 5 pp

631-645, 1997.

[14] Gaochao Xu, Junjie Pang, and Xiaodong Fu, “A Load

Balancing Model Based on Cloud Partitioning for the

Public Cloud”, TSINGHUA SCIENCE AND

TECHNOLOGY, vol.18, no.1, February 2013.

[15] H.C. Lin and C.S. Raghavendra, “A Dynamic Load-

Balancing Policy with a Central Job Dispatcher (LBC)”,

IEEE Transaction on Software Engineering vol.18 No.2

pp148-158, 1992.

[16] K.Salah, P.Calyam and M.I.Buhari , “Assessing Readiness

of IP Networks to Support Desktop Videoconferencing

Using OPNET”, Journal of Network and Computer

Applications, November 2008.

[17] Manju Sharma and Manoj, “Comparative Investigation on

Throughput and Client Response Time for a Switched and

Routed Wireless LAN based on OPNET”, Proceedings of

2.918

0.022

0.195

0.286

2.95

0.026

0.16

0.29

0 0.5 1 1.5 2 2.5 3 3.5

Traffic Dropped

TCP Delay

FTP Download Response Time

FTP Upload Response Time

Completely-Distributed

Semi-Distributed

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.12, May 2016

6

National Conference on Emerging Trends in Computing

and Communication (ETCC-07), pp 436-440, 2007.

[18] Manju Sharma, Manoj Kumar and Ajay K.Sharma, “HTTP

and FTP Statistics for Wireless and Wire-line Network

with and without Load Balance based on OPNET”, IJISS,

vol.5, no.1, p 112-125 , 2008.

[19] Mayank & Atul, “Comparative Survey of Load Balancing

Algorithms in Cloud Computing Environment”, IJDCC,

vol.1, No.2, 2013.

[20] Mohsen & Hossein Delda, “Balancing Load in a

Computational Grid Applying Adaptive, Intelligent

Colonies of Ants”, Informatica 32, pp 327–335, 2008.

[21] Payal and Atul, “A Comparative study of Static and

Dynamic Load Balancing Algorithms”, International

journal of Advance Research in Computer Science and

Management Studies, Vol.2 No.12, Dec 2014.

[22] Ritika and Harjot, “Load Balancing Techniques using

Mobile Agents”, IPASJ-IIJCS, vol.2, no.12, 2014.

[23] Santosh Kumar and Vikram Singh, “Load Balancing in

Distributed Systems”, IJRREST, vol.1, no.2, September

2012.

[24] Suriya and Prashanth, “Review of load balancing in cloud

computing”, IJCS, vol.10, no.1, Jan 2013.

[25] . Lan and T.YU, “A Dynamic Central Scheduler Load

Balancing Mechanism”, Proc. of 14th IEEE Conf. on

Computers and Communications, 1995.

IJCATM : www.ijcaonline.org

