
International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.2, May 2016

17

NoCGIN: A Gamma Interconnection Network as NoC

Interconnect

Meenal A. Borkar
Research Scholar

School of Engineering and
Technology, Ansal University,

Gurgaon, India

Nitin Nitin
Associate Professor

Department of CSE and IT,
Jaypee Institute of Information
Technology, A-10, Sector-62,

Noida-201307, India

Atul Kumar
Professor

School of Engineering and
Technology, Ansal University,

Gurgaon, India

ABSTRACT

As billions of transistors can easily getting manufactured on

small chips, multiple processing elements are also getting

fabricated on these chips. This type of chip manufacturing

caught attention of researchers from the domains like Parallel

and Distributed Computing, Computer Aided Chip

Manufacturing, Computer Design etc. Many researchers tried

to utilize the boosted capacity of multiprocessor chips to

implement time consuming, bulky, parallel algorithms. A

strong communication network, which is reliable, robust and

reusable is very much needed to achieve expected

performance. This paper proposes a new Gamma

Interconnection Network variant, namely NoCGIN, which act

as interconnection network for Networks-on-Chip. The paper

further gives information about the topology of NoCGIN and

a simple routing algorithm for routing packets.

Keywords

Networks-on-chip, Gamma Interconnection Network,

Systems-on-chip, Parallel Computing

1. INTRODUCTION
In this era of high speed processing, multiple processors are

fabricated on single chip. To achieve speed, the computations

are distributed among these processors. The processors are

interconnected to each other using either direct links,

crossbars or multistage interconnection networks. The

multistage interconnection networks prove economical as well

as beneficial and provide good connectivity with increased

reliability. Majority of the researchers worked on multistage

interconnection networks to provide higher reliability, so that

the high end processing systems become more robust for

parallel and distributed processing. One of the challenges

faced by theses researcher was, designing MINs which are not

fault robust. By fault robust, we mean, if the fault exists then

communication between some processors get abandoned. The

issue was handled in past by designing the networks, which

are capable of providing multiple paths or redundant paths[1-

7].

1.1 Interconnection Networks

Interconnection Networks (IN) [1-7] have a very rich history.

Figure 1 shows the typical structure of IN. The development

of IN can be attributed to its use in three major areas, namely

 Telephone Networks

 Inter-processor communication networks

 Processor-memory interconnection networks

Telephone networks were using INs since their conception. In

earlier days, electro-mechanical crossbars and step-by-step

switches were used. The major research developments in

telephone networks were non-blocking networks, multistage

Clos networks and Benes networks. By 1980, long-distance

calls were made using digital and electronic switches, whereas

local calls were made using electro-mechanical switches

[4][6].

Fig 1: Interconnection Network

Inter-processor interconnection network came into the picture

when the processors needed to be connected in a 2D array

style. Initial machines like Solomon, Illiac and MPP were

based on simple INs like 2D mesh or torus. These INs were

preferred because the initial machines required physical

regularity in interconnections. Binary n-cube and hypercube

became popular, due to their low diameter, in late 1970s. The

low dimension networks were found performing quite well

under realistic packaging constraint; so many manufacturers

again started using 2D and 3D topologies.

Processor-memory interconnections emerged in late 1960s

and were used to allow parallel processors to access the

memory without burdening the other processors. Crossbar

switches are widely used for these types of system

interconnects.

These three development threads together are used to design

the interconnection network in modern systems. Designing an

interconnection network for parallel processors with multiple

memory banks is always a critical task. To achieve faster

access to memory units without introducing much waiting,

multistage interconnection networks (MIN) [4-7] were

invented. After 1980s, a lot of research was carried out to

satisfy the needs of the demanding communication problems

of multi-computers. This research was driven by

developments in the technology to construct single–chip Very

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.2, May 2016

18

Large Scale Integration (VLSI) routers. Then, a series of new

ideas filled the research jargon of digital communication

systems.

1.2 Multistage Interconnection Networks
Due to increased use of multiprocessor systems the reliability,

availability and performance characteristics of the networks

that interconnect processors to processors, processors to

memories and memories to memories captured the attention of

researchers. A Multistage Interconnection Network (MIN), in

particular, is an IN consisting of a cascade of switching

stages, each containing switching elements (SE). Figure 2

shows a typical MIN, connecting processors to memory units.

MINs are widely used for broadband switching technology

and for multiprocessor systems. Besides this, MINs offer an

effective method of implementing switches used in data

communication networks. With performance requirement of

the switches exceeding several terabits/sec and teraflops/sec,

it becomes very necessary to make them dynamic and fault–

tolerant[8-13].

Fig 2: Multistage Interconnection Network

1.3 Gamma Interconnection Network
The Gamma Network [14-15] is a multistage interconnection

network, which uses the redundant paths method for design. It

connects N = 2n inputs to N outputs. It consists of (log2N) + 1

stages with N switches per stage. These switches are

connected with each other using 3 X 3 crossbar switch. The

input stage uses 1 X 3 crossbar, output switch uses 3 X 1

crossbar and all the intermediate switches use 3 X 3 crossbar.

A sample Gamma Network is shown in Figure 3. The stages

are linked together using “power of two” and identify

connections such that redundant paths exist. The path between

any source to destination is represented using any one of the

redundant forms of the difference between source and

destination. These redundant forms are generated using

Binary Redundant Number System[28].

Fig 3: Gamma Network

The Gamma Network uses binary redundant form [23][28] of

difference between source and destination. This form is better

known as tag or routing tag. A bit in routing tag can take three

values: 1, 0 and -1. The routing tag T = (tn-1, tn-2, t0), where

the first bit is MSB and the nth bit is LSB. There are three

possible interconnections possible at a stage i. The data from

switch j takes straight path to deliver data to switch j in stage

i+1, take upward path to reach switch (j – 2i) mod N and take

downward path to reach switch (j + 2i)mod N. The Gamma

Network can realize perfect shuffle, cyclic shifts and

permutation shifts. Researchers tried various ways to provide

fault tolerance to GIN. There are 20 plus network variants

available in literature[15-35]. Table 1 lists the network

variants along with the routing methods compatible with each

of them. Interested readers can find the detailed information

about Gamma Interconnection Network Family in [35].

Table 1. Gamma Network variants with their routing

methods

Sr.

No. Name of Network Routing Method Used

1. GIN Distance Tag Routing

2. Kappa Network Destination Tag Routing

3. Extra Stage GIN Distance Tag Routing

4. B-Network Destination Tag Routing

5. Balanced GIN Distance Tag Routing

6. Mono GIN Distance Tag Routing

7. Reliable GIN Distance tag Routing

8. Cyclic GIN
Distance Tag Routing ,

Destination Tag Routing

9. Partially Chained GIN Distance Tag Routing

10. Fully Chained GIN Distance Tag Routing

11. 3D GIN Distance Tag

12. 3D-CGIN
Distance Tag Routing,

Destination Tag Routing

13. Incomplete GIN
Twin Tag Routing based on

Distance Tag Routing

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.2, May 2016

19

14. Incomplete CGIN
Twin Tag Routing based on

Distance Tag Routing

15. 4DGIN-1 Distance Tag Routing

16. 4DGIN-2 Distance Tag Routing

17. NBGIN Destination Tag Routing

18.
MCDRGN(Additional link at
initial stage)

Distance Tag Routing

19.
MCDRGN (Additional link at

initial and intermediate stages)
Distance Tag Routing

20. DRGIN
Distance Tag Routing,
Destination Tag Routing

21 GIN with Alternate Source
Distance Tag Routing,

Destination Tag Routing

1.4 Networks-on-Chip
With advances in VLSI technology, fabricating thousands of

circuits on small area is a common practice. Since last decade,

the chip manufacturers used the advanced technology to map

multiple cores on a single chip. Today, 4 to 8 core processors

is normal processing configuration. To provide higher

processing capability, the chips with 64[36], 80[37] and

100[38][40] cores are also available. Researchers have also

manufactured, chips with 1000[39][40][42] cores as a

research prototype for High Performance Processing. When

multiple cores are available on single chip, depending on the

application scheduled for processing, communicate with each

other. During communication, these cores exchange data and

information. There is a need for providing some kind of

network for these cores. The interconnection network used for

this purpose is known as Network on Chip (NoC). The

traditional bus system was used initially, as it is the cheapest

topology to implement, for this purpose, but it was found that-

(1) the speed of communication was slow, (2) suffers from

effects of crosstalk and electromagnetic interference, (3) if

tried to scale beyond a particular number, hampers the

communication[41][45-47][50-51][58-60][66-68].

To overcome these problems, researchers started checking and

using the applicability of other Interconnection Network

topologies. The Mesh and Torus topologies are popularly used

as NoC interconnects. The detailed information can be

referred from [48-49][52-55][57][62-65].

While studying the available literature, we found multiple

MINs and INs used as NoC interconnects. When started

looking for similar implementation / use of Gamma Network,

we found nothing. The Gamma Network when proposed

found suitable for implementation of Fast Fourier

Transform(FFT) algorithms, which means it has inherent

design capability to work as NoC interconnect. During

literature review, it was also observed that, with such a variety

of network variants, with improved path generation

capabilities, GIN can prove better interconnect for NoCs. This

motivated us to start our work in that direction.

This paper is organized as follows: Section 1 – presented the

basic information about INs, MINs, GIN and NoC. The

section also presented the motivation for this work. Section 2

– presents the proposed work, specifically a new variant of

GIN namely NoCGIN. We present the topology of NoCGIN

with simple routing algorithm. Section 3 – presents the

experimental setup, assumptions and conclusion. Section 4 –

presents the future work scope, followed by the references.

We ask that authors follow some simple guidelines. In

essence, we ask you to make your paper look exactly like this

document. The easiest way to do this is simply to download

the template, and replace the content with your own material.

2. PROPOSED WORK
In this section, we present the topology of NoCGIN and the

routing algorithm for it. The section also provides suitable

examples to demonstrate the routing.

2.1 Topology of NoCGIN
NoCGIN is a Gamma Interconnection Network of size N = 2n.

Here N is the number of inputs and number of outputs it is

connecting with. The NoCGIN will have (log2N)+1 number of

stages, numbered from 0 to (log2N)+1. Each stage will have N

number of switching elements(SE). The SEs in stages will

have one input from core it is connected with and 3

bidirectional links. The bidirectional links connect the SE to 2

SEs in next stage and the immediate next SE in same stage.

For the SEs in last stage, the bidirectional links connect to

previous stage and the immediate next SE in same stage.

Figure 4 shows the typical topology of NoCGIN of size N =

22. The NoCGIN as a variant of GIN is compatible with

Distance Tag Routing.

Fig 4: NoCGIN Topology size N = 4

2.2 Working and Routing Algorithm of

NoCGIN
As we can see in Figure 4, the SEs are connected with cores

and other SEs with bidirectional links. The cores generate the

messages for communication. These messages are then

divided into smaller entities known as packets. Each packet

carries the address of source core number and destination core

number. The data inside the message is known as payload.

Therefore a packet’s format is similar to one shown in Figure

5.

Fig 5: Format of Packet

The general strategy for packet routing is as follows:

1. If the source and destination are from same stage,

use the vertical links to route packet.

Source

Core

Numbe

r

Destinatio

n Core

Number

Payload

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.2, May 2016

20

2. If the source and destination are located in initial /

end stages, use Destination Tag Routing, where the

tag is made up of 2 bits,

3. If the source and destination are located in

immediate next or previous stages, use Destination

Tag Routing, where the tag is made up of 1 bit.

The detailed implementation of this strategy is listed as an

algorithm in Table 2 given below.

Table 2. Routing Algorithm for NoCGIN size N = 4

Algorithm: Routing in NoCGIN

Input: Packet with source, destination and payload

Output: Step by step packet routing

Method:

Let N = 4

1. Take the packet for routing,

2. if (source and destination are in same stage) then

 if (source < destination) then

 Use the vertical link in down direction until the

destination is reached.

 else

Use the vertical link in up direction until the

destination is reached.

 [End of If]

[End of Step 2 If]

3. if (source is in stage 0 and destination is in stage 2) then

 i. calculate the difference as

 diff = (destination)mod N – (source)mod N

 ii. Generate Two bit tag for diff

 iii. if (the tag generation is not possible) then

a. if((source)mod N > (destination) mod N) then

Use the vertical link in upward direction

Else

Use the vertical link in downward direction

[End of if]

b. Let newsrc = The SE reached using this will act

as new source

c. Goto step 2 , where source = newsrc

 [End of Step iii if]

 iv. Use this tag in reverse direction to route packet.

[End of step 3 If]

4. if (source is in stage 2 and destination is in stage 1) then

 i. calculate the difference as

 diff = (destination)mod N – (source)mod N

 ii. Generate Two bit tag for diff

 iii. if (the tag generation is not possible) then

a. if((source)mod N > (destination) mod N) then

Use the vertical link in upward direction

else

Use the vertical link in downward direction

[End of if]

b. Let newsrc = The SE reached using this will act

as new source

c. Goto step 2 , where source = newsrc

 [End of Step iii if]

 iv. Replace every 1 with -1, which indicates the cross

link is to be followed in back direction

 v. Use this tag in reverse direction to route packet.

[End of Step 4 If]

5. if (source is in stage 0 and destination is in stage 1) then

 i. calculate the difference as

 diff = (destination)mod N – (source)mod N

 ii. Generate One bit tag for diff

 iii. if (the tag generation is not possible) then

a. if((source)mod N > (destination) mod N) then

Use the vertical link in upward direction

else

Use the vertical link in downward direction

[End of if]

b. Let newsrc = The SE reached using this will act

as new source

c. Goto step 2 , where source = newsrc

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.2, May 2016

21

 [End of Step iii if]

 iv. Use this tag to route packet.

[End of Step 5 If]

6. if (source is in stage 1 and destination is in stage 0) then

 i. calculate the difference as

 diff = (destination)mod N – (source)mod N

 ii. Generate One bit tag for diff

 iii. if (the tag generation is not possible) then

a. if((source)mod N > (destination) mod N) then

Use the vertical link in upward direction

else

Use the vertical link in downward direction

[End of if]

b. Let newsrc = The SE reached using this will act

as new source

c. Goto step 2 , where source = newsrc

 [End of Step iii if]

 iv. Replace every 1 with -1, which indicates the cross

link is to be followed in back direction

 v. Use this tag to route packet.

[End of Step 6 If]

7. if (source is in stage 1 and destination is in stage 2) then

 i. calculate the difference as

 diff = (destination)mod N – (source)mod N

 ii. Generate One bit tag for diff

 iii. if (the tag generation is not possible) then

a. if((source)mod N > (destination) mod N) then

Use the vertical link in upward direction

else

Use the vertical link in downward direction

[End of if]

b. Let newsrc = The SE reached using this will act

as new source

c. Goto step 2 , where source = newsrc

 [End of Step iii if]

 iv. Use this tag to route packet.

[End of Step 7 If]

8. if (source is in stage 2 and destination is in stage 1) then

 i. calculate the difference as

 diff = (destination)mod N – (source)mod N

 ii. Generate One bit tag for diff

 iii. if (the tag generation is not possible) then

a. if((source)mod N > (destination) mod N) then

Use the vertical link in upward direction

else

Use the vertical link in downward direction

[End of if]

b. Let newsrc = The SE reached using this will act

as new source

c. Goto step 2 , where source = newsrc

 [End of Step iii if]

 iv. Replace every 1 with -1, which indicates the cross

link is to be followed in back direction

 v. Use this tag to route packet.

[End of Step 8 If]

This algorithm takes care of all the possible cases,where the

tag can not be generated using Distance Tag Routing. The

interested users can refer to [Parker and Raghavendra paper]

to get tag generation formula for distance tag routing. Let us

take few examples to demonstrate the working of this

algorithm.

Example 1: Let us assume Source = 0 and Destination = 3.

Now as we can see, the source and destination are in same

stage. So step 2 will come in picture. Next we will check

whether source < destination, which is the case here. We will

start following the vertical straight link in down direction to

reach SE 1. Again the destination is not reached, and both

source and destination are from same stage. New source 1 <

destination 3, so again the vertical straight link is followed in

down direction. The process repeats until destination 3 is

reached. Figure 6 shows this routing.

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.2, May 2016

22

Fig 6: Routing packet from 0 to 3 using Step 2 of the

algorithm

Example 2: Now suppose the source is 7 and destination is 5.

Again both, the source and destination are in same stage so

Step 2 is followed. The vertical link in upward direction is

traversed until the destination 5 is reached. Figure 7 shows

this routing.

Fig 7: Routing packet from 7 to 5 using Step 2 of the

algorithm

Example 3: The source = 2 and destination = 10. The source

is in stage 0 and destination is in stage 2, therefore Step 3 is

used. Here the difference is calculated as diff = (10)mod 4 –

(2)mod 4, which comes out to be 0. The tag generated in this

case is 00. We will use this tag in reverse order to reach

destination. Figure 8 shows the routing.

Fig 8: Routing packet from 2 to 10 using Step 3

Example 4: The source = 9 and destination = 2. The source is

in stage 2 and destination is in stage 0, therefore Step 4 is

used. Here the difference is calculated as diff = (2)mod 4 –

(9)mod 4, which comes out to be -1. The tag generated in this

case is 1-1. Now we need to replace each 1 by -1. So the

modified tag becomes -1-1. We will use this tag in reverse

order to reach the destination. Figure 9 shows the routing.

Fig 9: Routing packet from 9 to 2 using Step 4

Example 5: The source = 1 and destination = 4. The source is

in stage 0 and destination is in stage 1, therefore Step 5 is

used. Here the difference is calculated as diff = (4)mod 4 –

(1)mod 4, which comes out to be -1. The tag can not be

generated in this case as the connectivity between stage 0 and

1 is done using 20 connection pattern. The (desination)mod 4

> (source) mod 4, so the vertical link is chosen to go upwards.

The SE 0 is reached and it will act as new source. Then again

the tag is generated, which comes out to be 0, means using

straight link in forward direction the destination can be

reached. Figure 10 shows this routing.

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.2, May 2016

23

Fig 10: Routing packet from 1 to 4 using Step 5

Example 6: The source = 5 and destination = 3. The source is

in stage 1 and destination is in stage 0, therefore Step 6 is

used. Here the difference is calculated as diff = (5)mod 4 –

(3)mod 4, which comes out to be -2. The tag can not be

generated in this case as the connectivity between stage 0 and

1 is done using 20 connection pattern. The (desination)mod 4

< (source) mod 4, so the vertical link is chosen to go

downwards. The SE 6 is reached and it will act as new source.

Then again the tag is generated, which comes out to be -1.

Still due to connection pattern between stage 0 and 1 it is not

possible to route the packet. So again the vertical link in

doward direction is used , to reach SE 7. Now from SE 7 the

difference becomes 0, means using straight link in backward

direction the destination can be reached. Figure 11 shows this

routing.

 Fig 11: Routing packet from 5 to 3 using Step 6

3. RESULTS AND CONCLUSION
In this section we present the experimental setup, results and

discussion. The simulation of this algorithm is written in C++.

The simulation is written for fault-free environment. It is also

assumed that each SE has sufficient buffer space to hold the

packets to be routed. The simulation has been tested on Dell

Vostro Quad Core processor with 64 bit Ubuntu OS. The

input output pairs are generated randomly during this testing.

It was observed that in hop count has not exceeded 4, which is

an achievement of this work. The algorithm can easily be

generalized for any size of NoCGIN.

4. FUTURE SCOPE
In this paper, a new variant of GIN is proposed, whose name

is NoCGIN. As the name suggests, this variant is very useful

as NoC interconnect. The prominent observations are:

1. The network allows forward as well as backword

routing, which was not available in original

network,

2. Each SE can be connected with one core, makes it

suitable for NoCs with high number of cores,

3. The routing algorithm is very simple and can be

easily genralized.

As it is mentioned in Section 3, the simulation is tested in

fault-free environment. The same algorithm can be extended

to work in faulty environment. The hop count which was

observed not beyond 4 will certainly change in that scenario.

Further we would also wish to try the use of other GIN

variants in NoC, to explore their usability.

5. REFERENCES
[1] Hwang, K., and Briggs, F.A., 1984, Computer

Architecture and Parallel Processing, McGraw– Hill,

New York.

[2] Dally, W., and Towles, B., 2004, Principles and Practices

of Interconnection Networks, Morgan Kaufmann, San

Francisco, CA.

[3] Duato, J., Yalamanchili, S., and Ni, L.M., 2003,

Interconnection Networks: An Engineering Approach,

Morgan Kaufmann, and San Francisco, CA.

[4] Feng, T. Y., 1981, “A Survey of Interconnection

Networks”, IEEE Transactions on Computers.

[5] Adams III, G. B., Agrawal, D. P., and Siegel, H. J., 1987,

“A Survey and Comparison of Fault–Tolerant Multistage

Interconnection Networks”, IEEE Transactions on

Computers.

[6] Special Issue on Interconnection Networks, 1987, IEEE

Computer 20 (6).

[7] Siegel, H.J., 1990, Interconnection Network for Large

Scale Parallel Processing: Theory and Case Studies,

McGraw Hill.

[8] Nitin, 2002, On a fault–tolerant hybrid ZETA MIN,

Master’s Thesis, Computer Science and Engineering

Department, Thapar Institute of Engineering and

Technology, Patiala, Punjab.

[9] Nitin, 2006, “Component Level Reliability Analysis of

Fault–tolerant Hybrid MINs”, WSEAS Transactions on

Computers.

[10] Kruskal, C. P., and Snir, M., 1983, “The Performance of

Multistage Interconnection Networks for

Multiprocessors”, IEEE Transactions on Computers, Vol.

C-32, Issue 12.

[11] Raghavendra, C. S., and Varma, A., 1986, “Fault

Tolerant Multiprocessors with Redundant-Path

Interconnection Networks”, IEEE Transactions on

Computers, Vol. C-35, Issue 4.

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.2, May 2016

24

[12] Varma, A., and Raghavendra, C. S., 1989, “Fault-

Tolerant routing in Multistage Interconnection

Networks”, IEEE Transactions on Computers, Vol. 38,

Issue 3.

[13] Fan, C. C., and Bruck, J., 2000, “Tolerating multiple

faults in Multistage Interconnection Networks with

minimal extra stages”, IEEE Transactions on Computers,

Vol. 49, Issue 9.

[14] Parker, D. S., and Raghavendra, C. S., 1982, “The

Gamma Network: A Multiprocessor Interconnection

Network With Redundant Paths”, IEEE Transactions on

Computers.

[15] Parker, D. S., and Raghavendra, C. S., 1984, “The

Gamma Network”, IEEE Transactions on Computers,

Vol. c–33, No. 4.

[16] Kothari, S. C., Prabhu G. M., and Roberts, R., 1988,

“The Kappa Network with Fault–Tolerant Destination

Tag Algorithm”, IEEE Transactions On Computers,

Vol.37 No 5.

[17] Lee, K.Y., and Hegazy, W., 1988, “The Extra Stage

Gamma Network”, IEEE Transactions on Computer,

Vol. 37, No. 11.

[18] Lee, K. Y., and Yoon, H., 1990, “The B–Network: A

Multistage Interconnection Network With Backward

Links”, IEEE Transactions on Computer, Vol. 39, No. 7.

[19] Venkatesan, R., and Mouftah, H. T., 1992, “Balanced

Gamma Network–A New Candidate For Broadband

Packet Switch Architectures”, IEEE Transactions on

Computer.

[20] Chen, C. W., Lu, N. P., Chen, T. F., and Chung, C. P.,

2000, “Fault Tolerant Gamma Interconnection Networks

By Chaining”, IEE Proceedings – Comput. Digit. Tech,

Vol. 147, No. 2.

[21] Chuang, P. J., 1998, “Creating a Highly Reliable

Modified Gamma Interconnection Network Using a

Balance Approach”, IEE Proceedings – Comput. Digit.

Tech, Vol. 145, No. 1.

[22] Tzeng, N. F., Chuang, P. J., and Wu, C. H., 1993,

“Creating Disjoint Paths In Gamma Interconnection

Networks”, IEEE Transactions on Computer, Vol. 42,

No. 10.

[23] Chuang, P. J., 1994, “CGIN: A Modified Gamma

Interconnection Network with Multiple Disjoint Paths”,

IEEE Transactions on Computer.

[24] Chen, C. W., Lu, N. P., and Chung, C. P., 2003, “3–

Disjoint Gamma Interconnection Network”, The Journal

of Systems and Software.

[25] Chen, Z., “A Class of Incomplete Gamma

Interconnection Network”, Available at:

www.researchgate.com

[26] Borkar, M.A., 2010, “A Survey of Fault Tolerance

Techniques Used in GIN”, in National Conference EEC,

2010

[27] Borkar, M.A., and Nitin, 2011, “3D–CGIN: A 3 Disjoint

Paths CGIN with Alternate Source”, in Proceedings of

ACC.

[28] Barlik, P. K., 2011, “FIR Filter IC Design Using

Redundant Binary Number Systems”, M.Tech Thesis,

NIT Rourkela, India.

[29] Borkar, M.A., 2011, “3D–CGIN: A 3Disjoint Paths

CGIN with Alternate Source”, M.Tech Dissertation,

UTU Dehradun, India.

[30] Borkar, M.A., and Nitin, 2012, “Network Status Aware

Routing in 3D–CGIN”, in Proceedings of ICCCS.

[31] Wu, Y., Liu, L., and Wang, Z., 1993, “Modified gamma

network and its optical implementation”, Journal of

Applied Optics, Vol. 32, Issue 35.

[32] Chaoyang, C. Q., “A minimal cost dynamic rerouting

gamma network”, Available At: http://wr.cyut.edu.tw

[33] Rajkumar, S., and Goyal, N.K., 2014, “Design of 4–

disjoint gamma interconnection layouts and reliability

analysis of gamma interconnection networks”, Journal of

Supercomputing.

[34] Chen, C. W., and Chung, C. P., 2001, “Fault Tolerant

Gamma Interconnection Networks without

backtracking”, Journal of Systems and Software.

[35] Borkar, M.A., Nitin, and Kumar, A., 2015, “A Survey on

the Family of Gamma Interconnection Network”,

International Journal of Applied Engineering Research,

Vol. 10, No. 24.

[36] Bell, S., Edwards, B., Amann, J., Conlin, R., et al., 2008,

“TILE64 processor: A 64-core SoC with Mesh

interconnect”, In Proceedings of the IEEE International

Solid-State Circuits Conference (ISSCC'08).

[37] Vangal, S., Howard, J., Ruhl, G., Dighe, S., Wilson, H.,

et al., 2007, “An 80-tile 1.28 tflops network-on-chip in

65nm cmos”, In Digest of Technical Papers of the IEEE

International Solid-State Circuits Conference

(ISSCC'07).

[38] Hoskote, Y., Vangal, S., Singh, A., Borkar, N., et al.,

2007, “A 5-ghz mesh interconnect for a tera flops

processor”, IEEE Micro.

[39] Radetzki, M., Feng, C. C., Zhao, X. Q., and Jantsch, A.,

2013, “Methods for Fault Tolerance in Network-on-

Chip”, ACM Computing Surveys.

[40] Tilera Announces the world’s first 100-core processor

with the new tile-gx family, Available At:

http://goo.gl/K9c85

[41] Nychis, G., Fallin, C., Moscibroda, T., Mutlu, O., and

Seshan, S., 2012, “On-chip Networks from a Networking

Perspective: Congestion and Scalability in Multi-Core

Interconnects”, In SIGCOMM.

[42] University of Glasgow, “Scientists squeeze more than

1,000 cores on to computer chip.”, Available At:

http://goo.gl/KdBbW

[43] Nitin, 2012, “On Asymptotic Analysis of Packet and

Wormhole Switched Routing Algorithm for Application-

specific Network-on-Chip”, Journal of Electrical and

Computer Engineering.

[44] Nitin, and Chauhan, D.S., 2010, “Stochastic

Communication for Application Specific Networks-on-

Chip”, Journal of Supercomputing, Springer, Volume 59,

Number 2.

http://wr.cyut.edu.tw/
http://goo.gl/K9c85
http://goo.gl/KdBbW

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.2, May 2016

25

[45] Agarwal, A., Iskander, C., and Shankar, R., 2009,

“Survey on Network on Chip (NoC) Architectures &

Contributions”, Journal of Engineering, Computing and

Architecture, Vol. 3, Issue 1.

[46] Constantinescu, C., 2003, “Trends and challenges in vlsi

circuit reliability”, IEEE Micro.

[47] Chae-Eun, R., Han-You, J., and Soonhoi, H., 2004,

“Many-to-many core-switch mapping in 2-D mesh NoC

architectures”, Proc. IEEE International Conference on

Computer Design: VLSI in Computers and Processors.

[48] Nitin, 2006, “Component Level reliability analysis of

fault-tolerant hybrid MINs,” WSEAS Transactions on

Computers, vol. 5, no. 9.

[49] Nitin, and Subramanian, A., 2008, “Efficient algorithms

and methods to solve dynamic MINs stability problem

using stable matching with complete ties,” Journal of

Discrete Algorithms, vol. 6, no. 3.

[50] Bjerregaard, T., and Mahadevan, S., 2006, “A survey of

research and practices of network-on-chip,” ACM

Computing Surveys, vol. 38, no. 1.

[51] Pirretti, M., Link, G. M., Brooks, R. R., Vijaykrishnan,

N., et al, 2004, “Fault Tolerant algorithms for network-

on-chip interconnect”, Proceedings of IEEE Computer

Society Annual Symposium on VLSI.

[52] Holsmark, R., and Kumar, S., 2005, “Design issues and

performance evaluation of mesh NoC with regions”,

Proceedings of 23rd NORCHIP conference.

[53] Rehan, F., Alemzadeh, H., Safari, S., Prinetto, P., et al,

2008, “Relaibility in Application Specific Mesh-based

NoC Architectures”, Proceedings of 14th IEEE

International Online Testing Symposium.

[54] Holsmark, R., Palesi, M., and Kumar, S., 2008,

“Deadlock free routing algorithms for irregular mesh

topology NoC systems with rectangular regions”, Journal

of System Architecture, Vol. 54, Issue 3-4.

[55] Samuelsson, H., and Kumar, S., 2004, “Ring road NoC

architecture”, Proceedings of NORCHIP conference.

[56] Bononi, L., and Concer, N., 2006, “Simulation and

analysis of network on chip architectures: ring, spidergon

and 2D mesh”, Proceedings of the Conference on

Design, Automation and Test in Europe.

[57] Bononi, L., Concer, N., Grammatikakis, M., Coppola M.,

et al, 2007, “NoC Topologies Exploration based on

Mapping and Simulation Models”, Proceedings of 10th

Euromicro conference on Digital System Design

Architectures, Methods and Tools.

[58] Manevich, R., Walter, I., Cidon, I., and Kolodny, A.,

2009, “Best of both worlds: A bus enhanced NoC

(BENoC)”, 3rd ACM/IEEE Symposium on Networks-

on-Chip.

[59] Thid, R., Sander, I., and Jantsch, A., 2006, “Flexible Bus

and NoC Performance Analysis with Configurable

Synthetic Workloads”, Proceedings of 9th Euromicro

conference on Digital System Design Architectures,

Methods and Tools.

[60] Lee, H. G., Chang, N., Ogras, U. Y., and Marculescu, R.,

2007, “On-chip communication architecture exploration:

A quantitative evaluation of point-to-point, bus, and

network-on-chip approaches”, ACM Transactions on

Design Automation of Electronic Systems, Vol 12, Issue

3.

[61] Tsai, K. L., Lai, F., Pan, C. Y., Xiao, D. S., et al, 2010,

“Design of low latency on-chip communication based on

hybrid NoC architecture”, Proceedings of 8th IEEE

conference on NEWCAS.

[62] Mirza-Aghatabar, M., Koohi, S., Hessabi, S., and

Pedram, M., 2007, “An Empirical Investigation of Mesh

and Torus NoC Topologies Under Different Routing

Algorithms and Traffic Models”, Proceedings of 10th

Euromicro conference on Digital System Design

Architectures, Methods and Tools.

[63] Concatto, C., Almeida, P., Kastensmidt, M., Cota, E., et

al, 2009, “Improving yield of torus nocs through fault-

diagnosis-and-repair of interconnect faults”, Proceedings

of 15th IEEE International Online Testing Symposium.

[64] Kao, Y. H., Alfaraj, N., Yang, M., and Chao, H. J., 2010,

“Design of High-Radix Clos Network-on-Chip”, 4th

ACM/IEEE International Symposium on Networks-on-

Chip.

[65] Kao, Y. H., Yang, M., Artan, N.S., and Chao, H. J.,

2011, “CNoC: High-Radix Clos Network-on-Chip”,

IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 30, Issue 12.

[66] Pande, P. P., Grecu, C., Jones, M., Ivanov, A., et al,

2005, “Performance evaluation and design trade-offs for

network-on-chip interconnect architectures”, IEEE

Transactions on Computers, Vol. 54, Issue 8.

[67] Zeferino, C. A., and Susin, A. A., 2003, “SoCIN: a

parametric and scalable network-on-chip”, Proceeding of

16th Symposium of Integrated Circuits and Systems

Design.

[68] Ogras, U. Y., Hu, J., and Marculescu, R., 2005, “Key

research problems in NoC design: a holistic perspective”,

Proceedings of 3rd IEEE/ACM/IFIP International

Conference on Hardware/Software codesign and System

synthesis.

IJCATM : www.ijcaonline.org

