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ABSTRACT 
Embedded systems used in real-time applications require 

design tools that could be costly and may have long 

verification cycles. Many design tools use predefined libraries 

and costly IPs during these design and verification cycles, and 

most of these libraries and IPs are static and difficult to 

modify. Many design requirements are changed during or 

after design and verification cycle, and designers need to 

address these changes and modify the system. This could be 

more time consuming due to verification cycle and static 

libraries. It is important to have dynamic libraries that could 

be modified and reconfigured based on the applications. This 

work creates reconfigurable arithmetic design blocks that 

could be used for arithmetic and matrix operations. The 

reconfigured library development system modifies the 

required library elements using Perl scripting language and 

verifies them on-the-fly using MATLAB. The development 

tool improves design time and reduces the verification 

process, but the key point is to use a unified design that 

combines some of the basic operations with more complex 

operations to reduce area and power consumption. The results 

indicate that using the reconfigurable development tool 

reduces verification time and increases the productivity. These 

libraries include structural Verilog HDL codes, testbench 

files, and MATLAB script files for local customization. Even 

though the reconfigurable HDL library is used for FPGA 

design flow, it could be easily modified for VLSI design flow.    

General Terms 

FPGA, Verilog HDL, Perl, MATLAB  

Keywords 

Hardware optimized, HDL, High Level Synthesis, MATLAB, 

Optimized Hardware, Perl, Power Efficient, Reconfigurable, 

RTL, Verilog HDL.  

1. INTRODUCTION 
Designing complex systems such as image and video 

processing, compression, face recognition, object tracking, 

multi-standard CODECs, and HD decoding schemes requires 

many basic and complex arithmetic blocks and a long 

verification process [1]. These complex designs are based on 

many Input/Output, processors, bus interfaces, memories and 

sensors. Many times, these systems can be designed as a 

single chip that is known as System-On-Chip (SoC) [2]. Many 

designers use RTL design flow when SoC are designed and 

verified. These design tools use design libraries that are 

mostly static and difficult to configure and verify. When a 

new or modified library element is needed, designers try to 

create new library elements from scratch or order new 

libraries from the vendor. These could be time consuming and 

costly for the designers. Classic design flow that uses static 

library and RTL design flow [1] [2] for both FPGA and ASIC 

is shown in Figure 1.  
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Fig 1: FPGA RTL level synthesis flow 

An algorithm can be converted to RTL using the behavioral 

description model, predefined libraries and IP cores. After 

completing this RTL code, formal verification must be done 

before implementation. After implementation of the RTL 

code, timing verification needs to be done for proper 

operation. When a required change or future modification is 

required by the costumer, the design needs to go through same 

synthesis flow. This drastically increases time-to-market 

(TTM) if new libraries need to be used, because it will require 

every part of the design to be verified. This will cause longer 

verification period of the design and it will increase design 

cost. The design and verification of the libraries and overall 

design shown in Figure 1 can take up 40-50% of the “Time to 

Market” (TTM). The RTL design that is shown in Figure 1 

becomes costly and impractical for larger system change and 

updates. For example, a base system design team that is 

working on 3G wants to move to 4G design using FPGA can 

have shorter TTM if the team uses reconfigurable pre-verified 

libraries [3].  

One method to overcome this problem is to introduce high 

level languages to the design cycle. Because of the extensive 

work done in Electronics System Level Design (ESLD), 

HW/SW co-design of a system and High Level Synthesis 

(HLS) [3][4] are integrated into FPGA and ASIC design flow. 

RTL description of a system can be implemented from a 

behavioral description of the system in Perl, C, Python and 

MATLAB [5]. This will result in a faster verification process 

and shorter TTM. This HLS idea focuses on design as whole. 

Some designers want to control the design and make certain 

changes in HDL code, but this could have a low possibility 

where HLS is used. The proposed design uses the scripting 

language Perl to create and MATLAB to verify each required 

library file. This integration is shown in Figure 2, and it 

introduces MATLAB and Perl into synthesis flow and verifies 

all the library design files. Each library element can be created 

and tested independently without interrupting the design and 

verification flow. This enables software designers to join the 

design process during hardware design and verification. After 

the verification process, the design can be implemented using 

FPGA synthesis tools. 
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Fig. 2: Proposed FPGA high level synthesis flow 

The next section will describe the proposed design and library 

generation process. Section 3 will focus on the description of 

each block, and the conclusion will describe future work and 

improvements. 

2. PROPOSED DESIGN 
The proposed design focuses on designing a reconfigurable 

library that could be used for a new or updated design. The 

TTM will be shorter with a design principle similar to HLS, as 

explained above. The main work focuses on designing library 

blocks that could be used and modified based on customer 

need. The library design will be done using Perl command 

line interface. The current library development platform 

supports; 

 OS platforms such as Windows, Linux and Mac OS X 

 Customized range and accuracy 

 FPGA or ASIC support 

 Vendor based IP core integration 

 Area and power optimized 

 User defined module and file names 

 Verilog HDL support  

 n-bit Fixed point number system (1<n<129)   

 Signed or unsigned number systems 

 Testbench generation 

 Automated testbench with MATLAB  

 Modelsim .do file for fast automation 

 Error comparison with MATLAB 

 User defined test data option 

The development platform creates the library blocks for 

desired operations such as addition, multiplication, etc. based 

on user constraints. The proposed design is explained and 

synthesized and implemented with Xilinx FPGAs [6] for 

operational verification. Library generation and verification 

flow is shown in Figure 3.  
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Fig. 3: Library generation and verification flow 

The proposed development platform is written in Perl 

scripting language. The platform accepts user constraints such 

as file name, number of input bits, test vector number, etc. It 

generates the Verilog HDL, testbench, MATLAB and batch 

files, and executes the batch file. The batch file opens 

MATLAB to generate testvectors and Modelsim or Iverilog 

for functional verification. After running Modelsim or 

Iverilog, the output files are generated for verification. These 

files are transferred into MATLAB to compare with the 

expected results, and MATLAB displays the error plots. This 

method can design and verify the design much shorter time, 

and allows the user to perform a full verification (verification 

time can increase based on platform and computer specs) or 

specify his/her testvectors for custom verification.  

3. BUILDING BLOCKS 
Basic arithmetic and logic operations such as addition, 

subtraction, multiplication, memory elements, registers, 

multiplexers, demultiplexers, 1’s and 2’s complements 

systems are building blocks of most of the systems in DSP 

and communication systems. By using these basic building 

blocks, more complex and useful blocks can be designed. 

Some of these arithmetic building blocks are division, square 

root, inverse square root and CORDIC (used to design 

trigonometric, hyperbolic and exponential functions) and 

some matrix operations such as addition, and subtraction and 

multiplication. These library blocks that are generated by the 

reconfigurable development tool are shown in Figure 4 below.  

In this section, these library blocks and their construction by 

the development tool is discussed in detail. Due to the 

simplicity and extensive research done on memory elements, 

multiplexers, demultiplexers, shifters, complement systems, 

adders and multipliers are not discussed in detail here.  

Hardware implementation of complex arithmetic operations 

and elementary functions is more difficult than hardware 

implementation of basic arithmetic operations. There are a 

few algorithms used on today’s computers to implement these 

functions. This chapter includes a brief description of these 

algorithms.The design platform uses some of these algorithms 

to implement these elementary functions, as well as some of 

the basic arithmetic operations. 
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Fig. 4: The reconfigurable library blocks 

These algorithms can perform differently based on the 

required sub functions. As a further example, division using a 

CORDIC algorithm may require less hardware [7] but it may 

be slow due to linear convergence; on the other hand, division 

by the Newton-Raphson [8] method may be faster but it may 

require more hardware.  

3.1 Addition/Subtraction  
There are two adder systems designed by the development 

system. Depending on speed or area, the development tool 

chooses Carry-Lookahead Adder (CLA) or Ripple-Carry 

Adder, respectively. Based on the selection, the subtraction 

system is designed with the adder.  

3.2 Multiplication  
The development tool can design sign and unsigned type 

multipliers based on Array and Booth multipliers. Based on 

the design platform, users can choose their multipliers from an 

IP core provided by the manufacturers. This may increase the 

overall performance and suggested method where IPs are 

available. The Perl code that generates any bit signed 

multiplier [9][10] Verilog is given in Listing 1 below.   

Listing 1. Multiplier Verilog file generation. 

#!/usr/bin/perl 

# Signed Multiplier 

use warnings; 

use strict; 

my $multiplier; 

print "Please Enter Module Name for Signed Multiplier :"; 

chomp ($multiplier = <STDIN>); 

my $bit; 

print "Please Enter number of bits for Multiplier(x) :"; 

chomp ($bit = <STDIN>); 

my $bit1; 

print "Please Enter number of bits for Multiplicand (y) :"; 

chomp ($bit1 = <STDIN>); 

my $i; 

my $target; 

 

while (1) { 

   my $target = $multiplier; 

 

   chomp $target; 

   if (-d $target) { 

      print "$target is a directory. This might create problem\n"; 

      next; 

   } 
   if (-e $target.".v") { 

      print "$target.v already exists. \n"; 

      print "Enter 'r' to write to a different name : "; 

      print "\nEnter 'o' to overwrite \n"; 

      print "Enter 'b' to back up to $target.old\n"; 

      my $choice = <STDIN>; 

      chomp $choice; 

      if ($choice eq "r") { 

         next; 
      } elsif ($choice eq "o") { 

         unless (-o $target.".v") { 

            print "Can't overwrite $target.v, it's not yours.\n"; 

            next; 

         } 
         unless (-w $target.".v") { 

            print "Can't overwrite $target: $!\n"; 

            next; 

         } 
      } elsif ($choice eq "b") { 

         if ( rename($target.".v",$target.".old") ) { 

            print "OK, moved $target.v to $target.old\n"; 

         } else { 
            print "Couldn't rename file: $!\n"; 

            next; 

         } 

      } else { 
         print "I didn't understand that answer.\n"; 

         next; 

      } 

   } 
   last if open OUTPUT, "> $target.v"; 

   print "I couldn't write on $target: $!\n"; 

   # cannot write. 

} 
print OUTPUT "/*\n"; 

print OUTPUT "Name:Signed Multiplier\n"; 

print OUTPUT "Designer:Semih Aslan\n"; 

print OUTPUT "*/\n"; 

print OUTPUT "module $multiplier (x, y, product);\n"; 

print OUTPUT "parameter M =  ",$bit-1,"; \n"; 

print OUTPUT "parameter N =  ",$bit1-1,"; \n"; 

print OUTPUT "input [M-1:0] x;\n"; 

print OUTPUT "input [N-1:0] y;\n"; 

print OUTPUT "output [M+N-1:0] product;\n"; 

print OUTPUT "wire sum [M-1:0][N-1:0];\n"; 

print OUTPUT "wire carry [M-1:0][N-1:0];\n"; 

print OUTPUT "genvar i, j;\n"; 

print OUTPUT "generate for (i=0; i<N; i = i +1) begin:\n"; 

print OUTPUT "  signed_multiplier\n"; 

print OUTPUT "  if (i==0)\n"; 

print OUTPUT "   for (j=0;j<M;j=j+1) begin: first_row\n"; 

print OUTPUT "    if (j==M-1)\n"; 

print OUTPUT "   assign sum[j][i] =!(x[i]&y[N-1]),\n"; 

print OUTPUT "   carry[j][i]=1;\n"; 

print OUTPUT "  else\n"; 

print OUTPUT "    assign sum[j][i]=x[j]&y[i],\n"; 

print OUTPUT "    carry[j][i] = 0; end\n"; 

print OUTPUT "  else if (i==N-1)\n"; 

print OUTPUT "    for (j=0;j<M;j=j+1) begin: last_row\n"; 

print OUTPUT "    if (j==M-1)\n"; 

print OUTPUT "    assign {carry[j][i],sum[j][i]} =(x[M-1]&y[N-

1])+carry[j][i-1]+carry[j-1][i];\n"; 

 print OUTPUT " else if (j==0)\n"; 

print OUTPUT "    assign {carry[j][i],sum[j][i]} =!(x[M-

1]&y[j])+sum[j+1][i-1];\n";  

print OUTPUT "else \n"; 

print OUTPUT "    assign {carry[j][i],sum[j][i]} =!(x[M-

1]&y[j])+sum[j+1][i-1]+carry[j-1][i];end\n";    

print OUTPUT "else \n"; 

print OUTPUT "    for (j=0;j<M;j=j+1) begin : rest_rows\n"; 

print OUTPUT "    if (j==0)\n"; 

print OUTPUT "    assign {carry[j][i],sum[j][i]} =(x[j]&y[i])+sum[j+1][i-

1];\n"; 
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print OUTPUT " else if (j==M-1)\n"; 

print OUTPUT "    assign {carry[j][i],sum[j][i]} =!(x[i]&y[N-

1])+carry[M-1][i-1]+carry[j-1][i];\n"; 

print OUTPUT "else \n"; 

print OUTPUT "    assign {carry[j][i],sum[j][i]} =(x[j]&y[i])+sum[j+1][i-

1]+carry[j-1][i];end\n"; 

print OUTPUT "end endgenerate\n"; 

 

print OUTPUT "generate for (i=0;i<N;i=i+1)\n"; 

print OUTPUT "  begin: product_lower_part\n"; 

print OUTPUT "    assign product[i] = sum[0][i];\n"; 

print OUTPUT "  end endgenerate\n"; 

   

print OUTPUT "  generate for (i=1;i<M;i=i+1)\n"; 

print OUTPUT "  begin: product_upper_part\n"; 

print OUTPUT "    assign product[N-1+i] = sum[i][N-1]; \n"; 

print OUTPUT "  end endgenerate\n"; 

print OUTPUT "  assign product[M+N-1] = carry[M-1][N-1] + 1'b1; \n"; 

print OUTPUT " endmodule \n"; 

 

3.3 Division/Square Root/Inverse Square 

Root   
The development tool can design division, square root, and 

inverse square root hardware and their testbenches 

individually or all together using the hardware reuse principle. 

These building blocks are designed using Newton-Raphson 

[9][10][11][12] and CORDIC algorithms [13][14][15]. The 

CORDIC algorithm is used in many different arithmetic and 

elementary functions except for division, square root and 

inverse square root. The division operation can be written as: 

N = D . Q + R (1) 

where N is dividend, D is divisor, Q is quotient, R is 

remainder and | R | < | D |.ulp  and sign (R) = sign(N). The 

unit in the last position (ulp) represents the lowest term where 

ulp = 1 for integer numbers and ulp = (radix)-n for n-bit 

fractional numbers [16]. 

3.3.1 Newton-Raphson Division  
The Newton-Raphson method shown in Equation (1) is a 

well-known technique to find the root of nonlinear functions. 

This root can be calculated using an initial value by 

approaching the root quadratically [8][9][17][18]. The 

accuracy of the division operation doubles in each iteration. 

The initial value estimation can reduce the iteration number 

and increase accuracy. 

𝑋𝑖+1 = 𝑋
𝑖
−

𝑓(𝑋𝑖)

𝑓′(𝑋𝑖)
 (2) 

The function 𝑓 𝑋 = 𝐷 −
1

𝑋
 can be defined to calculate 

𝑋𝑖+1 =
1

𝐷
  where D is the divisor. After applying 𝑓 𝑋  and 

𝑓′ 𝑋  to Equation (2),  𝑋𝑖+1 =
1

𝐷
 can be calculated as 

𝑋𝑖+1 = 𝑋𝑖(2 − 𝐷𝑋𝑖) (3) 

After nth iteration, the value of 𝑋𝑖+1 converges to 1/D and the 

quotient can be calculated as Q = N (1/D). Design accuracy 

and error can be improved by increasing the number of 

iterations and better estimate of initial value [19]. The 

hardware implementation of Newton-Raphson division and its 

iteration steps are described in Figure 5 and Table 1, 

respectively.  

x
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Fig. 5: Newton-Raphson division method 

Table 1 below shows the operation of the division block. In 

cycle 1, pre-determined values of initial approximation X0 and 

D are fetched into the multiplier. The product term is 

calculated and its twos complement is stored in Reg B. In 

cycle 2, this complemented value is multiplied by X0 and the 

result is stored in Reg A as X1. After three iterations or six 

clock cycles, the value of X3 converges to 1/D. After 

calculation of 1/D, the quotient can be calculated as shown in 

cycle 7 by multiplying X3 by N.  

This algorithm and its performance depend on the number of 

iterations and initial approximation. Calculation of 0.85/1.25 

when X0=0.5 and X0=0.75 for different iterations are shown in 

Figures 6 and 7, respectively. 

Table 1. Newton-Raphson division cycles. 

Operation 

Cycle 

Mux 

A 

Mux 

B 

Mux 

C 

Reg 

A 
Reg B 

1 0 1 0 --- 2-D. X0 

2 0 0 0 X1 --- 

3 0 1 1 --- 2-D. X1 

4 0 0 1 X2 --- 

5 0 1 1 --- 2-D. X2 

6 0 0 1 X3 --- 

7 1 1 1 N.X3 --- 
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Fig. 6: Calculation of 0.85/1.25 when X0=0.5 

 

Fig. 7: Calculation of 0.85/1.25 when X0=0.75 

The development system determines the number of iterations 

and calculates the optimal initial value based on that iteration 

as shown in Figure 8 below.  

 

Fig. 8: Calculation of 0.85/1.25 for different initial 

values. 

3.3.2 Newton-Raphson Square Root and Inverse 

Square Root   
Hardware implementation of square root and inverse square 

root are possible using Newton-Raphson algorithms that are 

similar to division operations. This makes it possible to have 

unified division, square root and inverse square root 

operations. Inverse square root operations can be generated 

using the Newton-Raphson algorithm. The function 𝑓 𝑋 =

𝑋2 −
1

𝐷
 can be defined to calculate 𝑋𝑖+1 =

1

 𝐷
 . After applying 

𝑓 𝑋  and 𝑓′ 𝑋  to Equation (2); 

𝑋𝑖+1 = 2−1𝑋𝑖(3 −  D𝑋𝑖
2) (4) 

After nth iterations, the value of Xi+1 will converge at the 

square root of D. Calculations of the square root can be done 

by multiplying the final value of Equation (4) by D. The 

hardware implementation of Newton-Raphson square root and 

inverse square root methods and their iteration steps are 

described in Figure 9 and Table2, respectively. 
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Fig. 9: Newton-Raphson inverse-sqrt and sqrt methods. 

Table 2. Newton Raphson inverse sqrt and sqrt cycles. 

OC Reg A Reg B Reg C 

1 X0
2 --- --- 

2 D.X0
2 --- 2-1.(3 - D.X0

2) 

3 2-1X0.(3 - D.X0
2) 2-1X0.(3 - D.X0

2) --- 

4 X1
2 X1 --- 

5 D.X1
2 --- 2-1.(3 - D.X1

2) 

6 2-1X1.(3 - D.X1
2) 2-1X1.(3 - D.X1

2) --- 

7 X2
2 X2 --- 

8 D.X2
2 --- 2-1.(3 - D.X2

2) 

9 2-1X2.(3 - D.X2
2) 2-1X2.(3- D.X1

2) --- 

10 D.X3 --- --- 
 

Table 2 above shows the operation of the inverse square root 

and square root blocks. In cycle 1, X0
2 is calculated. This 

value is stored in Reg A. In cycle 2, X0
2 is multiplied by D 

and the result D X0
2 is stored in Reg A and 2-1(3 - D X0

2) is 

stored in Reg C. In cycle 3, 2-1(3 - D X0
2) is multiplied by X0 

and result 2-1 X0(3 - D X0
2) is stored in Reg A and Reg B. 

This is the end of the first iteration. Registers A and B are 

holding the value of X1 that will be used in the second 

iteration. Iterations 2 and 3 are done in cycles 4 through 9, and 
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the final result X3 will converge into  
1

 𝐷 
 . In cycle 10,  𝐷  is 

calculated by multiplying  
1

 𝐷 
𝐷. 

3.4 Sine and Cosine Implementations   
Sine and cosine functions can be implemented using the 

CORDIC algorithm. The CORDIC (COordinate Rotation 

DIgital Computer) algorithm was first described in 1959 by 

Jack E. Volder [12][13] to replace the analog resolver in the 

B-58 bomber’s navigation system. Since then, quite a bit of 

research has been done on the topic. This algorithm is used 

today in digital filters, FFT, DFT, Kalman filters, adaptive 

lattice structure, linear algebra applications, singular value 

decomposition (SVD) calculations, Given’s rotation and 

QRD-RLS filtering [20].  

The CORDIC algorithm is based on two modes; vectoring and 

rotation. This algorithm and its derivation over linear, circular 

and hyperbolic coordinate systems can compute many 

elementary functions described above. 

Let us assume that point A rotates to B by an angle of rotation 

angle θ, as shown in Figure 10. This will create a new point 

B(X’,Y’), and the relation of the new point B based on 

previous point A and the rotation angle θ [7][14][15][20].   

𝑥 = 𝑅. cos 𝛽  (5) 
 

𝑦 = 𝑅. sin(𝛽) (6) 

XX’

Y

Y’

R

θ

β

A(X,Y)

B(X’,Y’)

R

R

 

Fig. 10: Rotation of vector A(x,y) to B(x’,y’) 

𝑥 ′ = 𝑅. cos 𝜃 + 𝛽  (7) 
 

𝑦′ = 𝑅. sin(𝜃 + 𝛽) (8) 

Using the trigonometric properties; 

𝑠𝑖𝑛 𝜃 + 𝛽 = 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝛽  (9) 
 

𝑐𝑜𝑠 𝜃 + 𝛽 = 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝛽 − 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽  (10) 

Putting (9) and (10) in (7) and (8) 

𝑥 ′ = 𝑅. 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝛽 − 𝑅. 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽  (11) 
 

𝑦′ = 𝑅. 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑅. 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝛽  (12) 

Putting (5) and (6) in (11) and (12) 

 
x′

y′  = 𝑐𝑜𝑠 𝜃  
1 −𝑡𝑎𝑛 𝜃 

𝑡𝑎𝑛 𝜃 1
  

x
y  (13) 

 

𝑥 ′ = 𝑐𝑜𝑠 𝜃  𝑥 − 𝑦. 𝑡𝑎𝑛 𝜃   (14.a) 
 

𝑦′ = 𝑐𝑜𝑠 𝜃  𝑥. 𝑡𝑎𝑛 𝜃 + 𝑦  (14.b) 

In this iteration, the value of 𝑡𝑎𝑛 𝜃  can be chosen in terms of 

power of 2. This will make it easy to implement as hardware 

because ∓2−𝑖  is simply an L-R shift. This transformation can 

be done by a sequence of smaller angle rotations ( 𝜃𝑖) in 

which, 

 

𝜃 =  𝜃𝑖

𝑛

𝑖

 (15) 

And by using this Equation [13] can be written as; 

 
𝑥i+1

𝑦i+1
 =  

𝑐𝑜𝑠 𝜃i − 𝑠𝑖𝑛 𝜃i 

𝑠𝑖𝑛 𝜃i 𝑐𝑜𝑠 𝜃i 
  

𝑥i

𝑦i
  (16) 

 

𝑡𝑎𝑛 𝜃𝑖 = ∓2−𝑖  (17) 
 

𝜃𝑖 = ∓𝑡𝑎𝑛−1 2−𝑖  (18) 

In addition, the value of the product of the 𝑐𝑜𝑠 𝜃  will be 

constant. This value is known as Ki (scaling factor). 

𝐾𝑖 =  𝑐𝑜𝑠 𝜃i 

𝑛

𝑖=0

 (19) 

 

𝐾𝑖 =  𝑐𝑜𝑠 ∓ 𝑡𝑎𝑛−1 2−𝑖  

𝑛

𝑖=0

 (20) 

Using the trigonometric property; 

𝑐𝑜𝑠 𝑡𝑎𝑛−1 𝛼  =
1

 1 + 𝛼2
 (21) 

Equation (20) scaling factor would be 

𝐾𝑖 =  
1

 1 + 2−2𝑖

𝑛

𝑖=0

 (22) 

This scaling factor value will be constant for large n (iteration 

number). Using the Equations (18) and (22) in Equation (16) 

the following may occur.  

𝑥𝑖+1 = 𝐾𝑖  .  𝑥𝑖 − 𝑦𝑖(∓2−𝑖)  (23) 
 

𝑦𝑖+1 = 𝐾𝑖  .  𝑦𝑖 + 𝑥𝑖(∓2−𝑖)  (24) 

and 

𝑥𝑖+1 = 𝐾𝑖  .  𝑥𝑖 − 𝑑𝑖 . 𝑦𝑖(2−𝑖)  (25) 
 

𝑦𝑖+1 = 𝐾𝑖  .  𝑥𝑖 + 𝑑𝑖 .𝑥𝑖(2−𝑖)  (26) 

The rotation of the angle must be updated. This will introduce 

a new set of equations: 

𝑧𝑖+1 = 𝑧𝑖 − 𝑑𝑖 . 𝑡𝑎𝑛
−1(2−𝑖) (27) 

Values for 𝑡𝑎𝑛−1(2−𝑖) can be stored in the memory. Variable 

di is the direction of the rotation and its value depends on zi. 

This may be represented as shown below: 

𝑑𝑖  
1
−1

        𝑧𝑖 ≥ 0
       𝑧𝑖 < 0

  (28) 

After the description of the vectoring mode operation, a 

general description of CORDIC algorithm for linear, circular 

and hyperbolic coordinates using vectoring and rotation 

modes can be given as shown below [14] [20]. 

𝑚 =  
1
0
−1

 
𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠      
𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠          
ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

 (29) 

 

𝑥𝑖+1 = 𝑥𝑖 − 𝑚 ∝𝑖 𝑦𝑖2
−𝑖  (30) 

 

 

𝑦𝑖+1 = 𝑦𝑖 +∝𝑖 𝑥𝑖2
−𝑖  (31) 

 

𝑧𝑖+1 =  

𝑧𝑖 − ∝𝑖 𝑡𝑎𝑛−1 2−𝑖     

𝑧𝑖 −  ∝𝑖 𝑡𝑎𝑛ℎ−1 2−𝑖  

𝑧𝑖 −  ∝𝑖 2−𝑖                   

 
𝑖𝑓 𝑚 = 1         
𝑖𝑓 𝑚 = 0         
𝑖𝑓 𝑚 = −1      

 (32) 
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Table 3. CORDIC shift sequences and scaling factor 

Coor. 

System 

M 

Shift Sequence 

Sm,i 

Convergence 

αmax 

Scale 

Factor Km 

(n→∞) 

1 0,1,2,……,i,…. 1.74 1.16676 

0 1,2,……,i+1,…. 1.0 1.0 

-1 1,2,3,4,………. 1.13 0.83816 

 
Table 4. CORDIC processor for three coordinate 

systems 

Coor 

Sys 

Rot. / 

Vec. 
Initializing Result Vectors 

1 Rot. 

X0 = XS 

Y0 = YS 

Z0 = β 

X0=1/K1,n 

Y0 = 0 

Z0 = β 

Xn = K1,n(XS cos(β) - YS sin(β)) 

Yn = K1,n(YS cos(β) + XS sin(β)) 

Zn = β 

Xn = cos(β) 

Yn = sin(β) 

Zn = 0 

1 Vec. 

X0 = XS 

Y0 = YS 

Z0 = β 

Xn = K1,n(sgn(X0)(sqrt(x2+y2) 

Yn = 0 

Zn = β+tan-1(YS/XS) 

0 Rot. 

X0 = XS 

Y0 = YS 

Z0 = ZS 

Xn = XS 

Yn = YS+ XS YS 

Zn = 0 

0 Vec. 

X0 = XS 

Y0 = YS 

Z0 = ZS 

Xn = XS 

Yn = 0 

Zn = ZS+ YS / XS 

-1 Rot. 

X0 = XS 

Y0 = YS 

Z0 = β 

X0=1/K-1,n 

Y0 = 0 

Z0 = β 

Xn = K -1,n(XS cosh(β) + YS sinh(β)) 

Yn = K -1,n(YS cosh(β) + XS sinh(β)) 

Zn = 0 

Xn = cosh(β) 

Yn = sinh(β) 

Zn = 0 

-1 Vec. 

X0 = XS 

Y0 = YS 

Z0 = β 

Xn = K1,n(sgn(X0)(sqrt(x2+y2) 

Yn = 0 

Zn = β+tan-1(YS/XS) 
 

Using Table 3 and Table 4, sin(θ) and cos(θ) values can be 

calculated. The circular coordinate rotation mode CORDIC 

can be used [14][20]. 
 

𝑥𝑖+1 = 𝐾.  𝑥𝑖 − ∝𝑖 𝑦𝑖2
−𝑖  (33) 

 

 

𝑦𝑖+1 = 𝐾.  𝑦𝑖 +  ∝𝑖 𝑥𝑖2
−𝑖  (34) 

 

𝑧𝑖+1 = 𝐾.  𝑧𝑖 − ∝𝑖 𝑡𝑎𝑛
−1 2−𝑖   (35) 

To start the iteration, the following initial values need to be 

assigned.    

𝐾 = 1.16676 (36) 

 

 

𝑥0 =
1

𝐾
=

1

1.16676
 (37) 

 

𝑦0 = 0,  (38) 

 

𝑧0 = 𝜃 (39) 

Using these Equations MATLAB code to for design and 

verification are shown in Figures 11, 12 and 13, respectively. 

 

Fig. 11: MATLAB sine(θ) and cos(θ) calculations 

 

Fig. 12: Sin(θ) and cos(θ) values between 0 < θ < 1.5 

 
Fig. 13: Sin(θ) and cos(θ) values between 0 < θ < 1.5 

3.5 Sinh, Cosh and e
(x) 

Implementations   
Sinh and Cosh functions can be implemented using the 

CORDIC provided above in Table 3 and 4. To calculate 

sinh(θ) and cosh(θ) values, the hyperbolic coordinate rotation 

mode CORDIC can be used [14][20]. 

 

𝑥𝑖+1 = 𝐾.  𝑥𝑖 + ∝𝑖 𝑦𝑖2
−𝑖  (40) 

. 
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𝑦𝑖+1 = 𝐾.  𝑦𝑖 +  ∝𝑖 𝑥𝑖2
−𝑖  (41) 

 

𝑧𝑖+1 = 𝐾.  𝑧𝑖 − ∝𝑖 𝑡𝑎𝑛ℎ−1 2−𝑖   (42) 

To start the iteration, the following initial values need to be 

assigned.   

𝐾 = 0.83816 (43) 
. 

𝑥0 =
1

𝐾
=

1

0.83816
 (44) 

 

After nth  iteration, and using the Equations (40), (41) and 

(42).  

𝑥𝑛 =  𝑠𝑖𝑛ℎ(𝜃) (45) 
 

𝑦0 = 𝑐𝑜𝑠ℎ(𝜃) (46) 
 

𝑧0 = 0  (47) 

An exponential function can be calculated using (45) and (46).  

𝑒𝑥 =  𝑐𝑜𝑠ℎ(𝜃) + 𝑠𝑖𝑛ℎ(𝜃) (48) 
. 

MATLAB representation of sinh, cosh, and exponential 

functions and error analysis are shown in Figures 14, 15, and 

16, respectively. 

 

Fig. 14: MATLAB code for sinh(θ), cosh(θ) and 

exponential function calculations 

 

Fig. 15: Error analysis of sin(θ) and cos(θ) 

 

Fig. 16: Sinh(θ), cosh(θ) and e
θ
 values between 0 < θ < 2 

3.6 Matrix Operations  
The library design platform can create library elements for 

some basic matrix operations such as addition, subtraction and 

multiplication. The library design matrix hardware and 

verification as same as explained above in Figure 3.  

3.6.1 Matrix Addition/Subtraction   
Hardware implementation of matrix addition is done as shown 

in Equations (49) and (50), respectively.  

C = A + B (49) 
 

𝑐𝑖 ,𝑗 = 𝑎𝑖 ,𝑗 + 𝑏𝑖 ,𝑗            𝑤ℎ𝑒𝑟𝑒  𝑖, 𝑗 = 1,2, … , 𝑛 (50) 

The conventional design is easy to understand and implement. 

The design platform uses the equation that is given in 

Equation (50) to calculate all elements of matrix C. The 

matrix addition/subtraction block is shown in Figure 17 

below. 



b1,2 a1,2

c1,2



b1,1 a1,1

c1,1



bi,j ai,j

ci,j

 

n n n n n n

n n n

Memory

Memory

 

Fig. 17: Matrix addition/ subtraction block 

3.6.2 Matrix Multiplication   
Matrix multiplications [8][20] are heavily used in many signal 

and image processing applications, such as adaptive 

beamforming [16][18] and multiple-input-multiple-output 

(MIMO) systems [18], and factorizations [21][22][23][24] 

such as QR factorization and DCT. Matrix multiplication 

requires operation elements (OE) such as addition and 

multiplication. In a matrix multiplication, the number of OEs 

depends on the matrix size. The relation between matrix size 

and the number of OEs is quadratic. This made it difficult to 

implement real time matrix multiplication libraries for larger 
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matrices. The design platform uses traditional matrix 

multiplication to generate library element. Matrix 

multiplication of an m×r matrix A and r×n matrix B produces 

a m×n matrix C [25]. 

Am,r × Br,n = Cm,n   (51) 
 

 

𝑎1,1 ⋯ 𝑎1,𝑟

⋮ ⋱ ⋮
𝑎𝑚 ,1 ⋯ 𝑎𝑚 ,𝑟

  

𝑏1,1 ⋯ 𝑏1,𝑛

⋮ ⋱ ⋮
𝑏𝑟 ,1 ⋯ 𝑏𝑟 ,𝑛

 =  

𝑐1,1 ⋯ 𝑐1,𝑛

⋮ ⋱ ⋮
𝑐𝑚 ,1 ⋯ 𝑐𝑚 ,𝑛

  (52) 

where; 

𝑐𝑖 ,𝑗 =  𝑎𝑖 ,𝑘 × 𝑏𝑘 ,𝑗

𝑟

𝑘=1

 (53) 

This matrix multiplication requires m×n×[rM+(r-1)A] 

arithmetic operations, where 𝑀 is for multiplier and 𝐴 is for 

adder. For example; multiplication of A4,3 and B3,6 results in 

C4,6. This operation requires 72 multiplication and 48 addition 

operations.  This shows that a 𝑛 × 𝑛 matrix multiplication 

requires 𝑛3 multiplications and 𝑛2(𝑛 − 1) additions. The 

number of multiplications in the matrix multiplication 

operation increases by an exponent of three (𝑛3) with the 

matrix size. 

The hardware realization of a matrix multiplication focuses on 

designing 𝑐𝑖 ,𝑗  due to the parallel nature of the system. In 

general, calculation of 𝑐𝑖 ,𝑗  is done using a bottom-up 

approach. The term 𝑐𝑖 ,𝑗  in Equation (53) can be written as; 

𝑐𝑖 ,𝑗 = 𝑎𝑖 ,1 × 𝑏1,𝑗 + 𝑎𝑖 ,2 × 𝑏2,𝑗 + ⋯ + 𝑎𝑖 ,𝑛 × 𝑏𝑛 ,𝑗  (54) 

Due to the matrix size choice of  𝑛 =  2𝑘 , the Equation 54 

can be written as 

𝑐𝑖 ,𝑗 = 𝑑1 + 𝑑2 + ⋯ + 𝑑𝑡  (55) 

where; 

𝑑𝑡 = 𝑎𝑖 ,2𝑡−1 × 𝑏2𝑡−1,𝑗 + 𝑎𝑖 ,2𝑡 × 𝑏2𝑡 ,𝑗        1 ≤ 𝑡 ≤
𝑛

2
 (56) 

The hardware realization of Equation (56) is shown in Figure 

18. 

ai,2t-1

b2t-1,j

dt

ai,2t-1 × b2t-1,j
M

e
m

o
ry

M
e

m
o

ryai,2t

b2t,j ai,2t × b2t,j

 

Fig. 18: Hardware realization of 𝒅𝒕 

This 𝑑𝑡  calculation block shown in Figure 18Fig is one of the 

most basic and important blocks in matrix multiplication. Any 

matrix multiplication can be done using only one of these 

blocks, an adder and rounding scheme. However, this is 

impractical for large matrices due to slow overall operation 

and increase in error boundaries. There are many different 

designs [26] that use different numbers of 𝑑𝑡  calculation 

blocks to improve speed. The platform generates the libraries 

based on the smaller block that is shown in Figure 18 above 

and using this block larger blocks can be created as shown in 

Figure 19 below. 

Larger matrix multiplications can be realized by using these 

blocks. A 32x32 matrix multiplication design block is shown 

in Figure 20 below.  

ai,2t-1

b2t-1,j

r

R
e

g
is

te
r

dt

Enable

r

R
e

g
is

te
r

Enable

r

R
e

g
is

te
r

r

R
e

g
is

te
r

Enable

2r

R
e

g
is

te
r

Enable

R
e

g
is

te
r

Enable

2r

2r

R
e

g
is

te
r

Enable

2x2

ai,2t

b2t,j

  

Fig. 19: Realization of 2x2 block 
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Fig. 20: Realization of 32x32 block 

4. CONCLUSION 
An area efficient, reconfigurable HDL library development 

platform for Arithmetic and Matrix Operations is designed for 

digital design and verification. The platform generates 

dynamic design libraries and verification files to improve 

design and verification of overall systems. Based on design 

complexity and required changes, TTM can be improved by 

up to 60%.  Even though this platform is not true HLS, it 

could be considered as hybrid HLS. Any designed system can 

be reconfigured at any time in any way using the dynamic 

libraries without going through the same design and 

verification hassle. MATLAB-based verification makes it 

possible to use all the features of MATLAB for faster and 

more efficient verification. The Perl-based design makes it 

possible to use all important text manipulations in Perl 

language. Even though command line user interface is user 

friendly, it creates some hassle for users when the library size 

increases.  

The future development platform will integrate a user friendly 

GUI using Perl/Tk. Another future goal is to make this 

platform totally open source by using only Iverilog and 

replacing MATLAB with Octave. In addition, current matrix 

libraries are limited to addition, subtraction and matrix 

multiplication. The future development platform will include 

some important matrix factorizations such as QR and LU 

factorizations, and Strassen based matrix multiplication for 

area optimization.   
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