
International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.4, May 2016

40

Reconfigurable HDL Library Development Platform for

Arithmetic and Matrix Operations

Semih Aslan
Ingram School of Engineering

Texas State University
S. Marcos, Texas, 78666, USA

ABSTRACT
Embedded systems used in real-time applications require

design tools that could be costly and may have long

verification cycles. Many design tools use predefined libraries

and costly IPs during these design and verification cycles, and

most of these libraries and IPs are static and difficult to

modify. Many design requirements are changed during or

after design and verification cycle, and designers need to

address these changes and modify the system. This could be

more time consuming due to verification cycle and static

libraries. It is important to have dynamic libraries that could

be modified and reconfigured based on the applications. This

work creates reconfigurable arithmetic design blocks that

could be used for arithmetic and matrix operations. The

reconfigured library development system modifies the

required library elements using Perl scripting language and

verifies them on-the-fly using MATLAB. The development

tool improves design time and reduces the verification

process, but the key point is to use a unified design that

combines some of the basic operations with more complex

operations to reduce area and power consumption. The results

indicate that using the reconfigurable development tool

reduces verification time and increases the productivity. These

libraries include structural Verilog HDL codes, testbench

files, and MATLAB script files for local customization. Even

though the reconfigurable HDL library is used for FPGA

design flow, it could be easily modified for VLSI design flow.

General Terms

FPGA, Verilog HDL, Perl, MATLAB

Keywords

Hardware optimized, HDL, High Level Synthesis, MATLAB,

Optimized Hardware, Perl, Power Efficient, Reconfigurable,

RTL, Verilog HDL.

1. INTRODUCTION
Designing complex systems such as image and video

processing, compression, face recognition, object tracking,

multi-standard CODECs, and HD decoding schemes requires

many basic and complex arithmetic blocks and a long

verification process [1]. These complex designs are based on

many Input/Output, processors, bus interfaces, memories and

sensors. Many times, these systems can be designed as a

single chip that is known as System-On-Chip (SoC) [2]. Many

designers use RTL design flow when SoC are designed and

verified. These design tools use design libraries that are

mostly static and difficult to configure and verify. When a

new or modified library element is needed, designers try to

create new library elements from scratch or order new

libraries from the vendor. These could be time consuming and

costly for the designers. Classic design flow that uses static

library and RTL design flow [1] [2] for both FPGA and ASIC

is shown in Figure 1.

Algorithm

RTL Timing

Tr
an

sl
at

e

M
a

p

P
la

ce
 &

 R
o

ut
e

IM
P

LE
M

EN
T

Bit
File

Formal Proof

Library

Logic
Synthesis

Fig 1: FPGA RTL level synthesis flow

An algorithm can be converted to RTL using the behavioral

description model, predefined libraries and IP cores. After

completing this RTL code, formal verification must be done

before implementation. After implementation of the RTL

code, timing verification needs to be done for proper

operation. When a required change or future modification is

required by the costumer, the design needs to go through same

synthesis flow. This drastically increases time-to-market

(TTM) if new libraries need to be used, because it will require

every part of the design to be verified. This will cause longer

verification period of the design and it will increase design

cost. The design and verification of the libraries and overall

design shown in Figure 1 can take up 40-50% of the “Time to

Market” (TTM). The RTL design that is shown in Figure 1

becomes costly and impractical for larger system change and

updates. For example, a base system design team that is

working on 3G wants to move to 4G design using FPGA can

have shorter TTM if the team uses reconfigurable pre-verified

libraries [3].

One method to overcome this problem is to introduce high

level languages to the design cycle. Because of the extensive

work done in Electronics System Level Design (ESLD),

HW/SW co-design of a system and High Level Synthesis

(HLS) [3][4] are integrated into FPGA and ASIC design flow.

RTL description of a system can be implemented from a

behavioral description of the system in Perl, C, Python and

MATLAB [5]. This will result in a faster verification process

and shorter TTM. This HLS idea focuses on design as whole.

Some designers want to control the design and make certain

changes in HDL code, but this could have a low possibility

where HLS is used. The proposed design uses the scripting

language Perl to create and MATLAB to verify each required

library file. This integration is shown in Figure 2, and it

introduces MATLAB and Perl into synthesis flow and verifies

all the library design files. Each library element can be created

and tested independently without interrupting the design and

verification flow. This enables software designers to join the

design process during hardware design and verification. After

the verification process, the design can be implemented using

FPGA synthesis tools.

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.4, May 2016

41

Perl

Algorithm

Library
Timing

T
ra

n
sl

a
te

M
a

p

P
la

ce
 &

 R
o

u
te

IM
P

LE
M

E
N

T

Bit
File

Formal Proof

RTL

MATLAB

Fig. 2: Proposed FPGA high level synthesis flow

The next section will describe the proposed design and library

generation process. Section 3 will focus on the description of

each block, and the conclusion will describe future work and

improvements.

2. PROPOSED DESIGN
The proposed design focuses on designing a reconfigurable

library that could be used for a new or updated design. The

TTM will be shorter with a design principle similar to HLS, as

explained above. The main work focuses on designing library

blocks that could be used and modified based on customer

need. The library design will be done using Perl command

line interface. The current library development platform

supports;

 OS platforms such as Windows, Linux and Mac OS X

 Customized range and accuracy

 FPGA or ASIC support

 Vendor based IP core integration

 Area and power optimized

 User defined module and file names

 Verilog HDL support

 n-bit Fixed point number system (1<n<129)

 Signed or unsigned number systems

 Testbench generation

 Automated testbench with MATLAB

 Modelsim .do file for fast automation

 Error comparison with MATLAB

 User defined test data option

The development platform creates the library blocks for

desired operations such as addition, multiplication, etc. based

on user constraints. The proposed design is explained and

synthesized and implemented with Xilinx FPGAs [6] for

operational verification. Library generation and verification

flow is shown in Figure 3.

 Iverilog/ MODELSIM

USER
CONSTRAINTS

Verification and
Error Files

PERL Script

Verilog HDL
Design File

Verilog HDL
Testbench File

MATLAB
Script File

Fig. 3: Library generation and verification flow

The proposed development platform is written in Perl

scripting language. The platform accepts user constraints such

as file name, number of input bits, test vector number, etc. It

generates the Verilog HDL, testbench, MATLAB and batch

files, and executes the batch file. The batch file opens

MATLAB to generate testvectors and Modelsim or Iverilog

for functional verification. After running Modelsim or

Iverilog, the output files are generated for verification. These

files are transferred into MATLAB to compare with the

expected results, and MATLAB displays the error plots. This

method can design and verify the design much shorter time,

and allows the user to perform a full verification (verification

time can increase based on platform and computer specs) or

specify his/her testvectors for custom verification.

3. BUILDING BLOCKS
Basic arithmetic and logic operations such as addition,

subtraction, multiplication, memory elements, registers,

multiplexers, demultiplexers, 1’s and 2’s complements

systems are building blocks of most of the systems in DSP

and communication systems. By using these basic building

blocks, more complex and useful blocks can be designed.

Some of these arithmetic building blocks are division, square

root, inverse square root and CORDIC (used to design

trigonometric, hyperbolic and exponential functions) and

some matrix operations such as addition, and subtraction and

multiplication. These library blocks that are generated by the

reconfigurable development tool are shown in Figure 4 below.

In this section, these library blocks and their construction by

the development tool is discussed in detail. Due to the

simplicity and extensive research done on memory elements,

multiplexers, demultiplexers, shifters, complement systems,

adders and multipliers are not discussed in detail here.

Hardware implementation of complex arithmetic operations

and elementary functions is more difficult than hardware

implementation of basic arithmetic operations. There are a

few algorithms used on today’s computers to implement these

functions. This chapter includes a brief description of these

algorithms.The design platform uses some of these algorithms

to implement these elementary functions, as well as some of

the basic arithmetic operations.

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.4, May 2016

42

Mux DeMux

In2 In1 In2 In1

Out Out

Inr In1 In

Out Outr Out1

Reg

Out

In

Complement

Out

In

Shift

Out

In

Memory

Date_Out

Data_In

A
d
d

re
s
s

In2 In1 In

Out Out

÷

In

Out

1 CORDIC

In

Out

Matrix Add/Sub

Out

In1 In2

Matrix
Multiplication

Out

In1 In2

Fig. 4: The reconfigurable library blocks

These algorithms can perform differently based on the

required sub functions. As a further example, division using a

CORDIC algorithm may require less hardware [7] but it may

be slow due to linear convergence; on the other hand, division

by the Newton-Raphson [8] method may be faster but it may

require more hardware.

3.1 Addition/Subtraction
There are two adder systems designed by the development

system. Depending on speed or area, the development tool

chooses Carry-Lookahead Adder (CLA) or Ripple-Carry

Adder, respectively. Based on the selection, the subtraction

system is designed with the adder.

3.2 Multiplication
The development tool can design sign and unsigned type

multipliers based on Array and Booth multipliers. Based on

the design platform, users can choose their multipliers from an

IP core provided by the manufacturers. This may increase the

overall performance and suggested method where IPs are

available. The Perl code that generates any bit signed

multiplier [9][10] Verilog is given in Listing 1 below.

Listing 1. Multiplier Verilog file generation.

#!/usr/bin/perl

Signed Multiplier

use warnings;

use strict;

my $multiplier;

print "Please Enter Module Name for Signed Multiplier :";

chomp ($multiplier = <STDIN>);

my $bit;

print "Please Enter number of bits for Multiplier(x) :";

chomp ($bit = <STDIN>);

my $bit1;

print "Please Enter number of bits for Multiplicand (y) :";

chomp ($bit1 = <STDIN>);

my $i;

my $target;

while (1) {

 my $target = $multiplier;

 chomp $target;

 if (-d $target) {

 print "$target is a directory. This might create problem\n";

 next;

 }
 if (-e $target.".v") {

 print "$target.v already exists. \n";

 print "Enter 'r' to write to a different name : ";

 print "\nEnter 'o' to overwrite \n";

 print "Enter 'b' to back up to $target.old\n";

 my $choice = <STDIN>;

 chomp $choice;

 if ($choice eq "r") {

 next;
 } elsif ($choice eq "o") {

 unless (-o $target.".v") {

 print "Can't overwrite $target.v, it's not yours.\n";

 next;

 }
 unless (-w $target.".v") {

 print "Can't overwrite $target: $!\n";

 next;

 }
 } elsif ($choice eq "b") {

 if (rename($target.".v",$target.".old")) {

 print "OK, moved $target.v to $target.old\n";

 } else {
 print "Couldn't rename file: $!\n";

 next;

 }

 } else {
 print "I didn't understand that answer.\n";

 next;

 }

 }
 last if open OUTPUT, "> $target.v";

 print "I couldn't write on $target: $!\n";

 # cannot write.

}
print OUTPUT "/*\n";

print OUTPUT "Name:Signed Multiplier\n";

print OUTPUT "Designer:Semih Aslan\n";

print OUTPUT "*/\n";

print OUTPUT "module $multiplier (x, y, product);\n";

print OUTPUT "parameter M = ",$bit-1,"; \n";

print OUTPUT "parameter N = ",$bit1-1,"; \n";

print OUTPUT "input [M-1:0] x;\n";

print OUTPUT "input [N-1:0] y;\n";

print OUTPUT "output [M+N-1:0] product;\n";

print OUTPUT "wire sum [M-1:0][N-1:0];\n";

print OUTPUT "wire carry [M-1:0][N-1:0];\n";

print OUTPUT "genvar i, j;\n";

print OUTPUT "generate for (i=0; i<N; i = i +1) begin:\n";

print OUTPUT " signed_multiplier\n";

print OUTPUT " if (i==0)\n";

print OUTPUT " for (j=0;j<M;j=j+1) begin: first_row\n";

print OUTPUT " if (j==M-1)\n";

print OUTPUT " assign sum[j][i] =!(x[i]&y[N-1]),\n";

print OUTPUT " carry[j][i]=1;\n";

print OUTPUT " else\n";

print OUTPUT " assign sum[j][i]=x[j]&y[i],\n";

print OUTPUT " carry[j][i] = 0; end\n";

print OUTPUT " else if (i==N-1)\n";

print OUTPUT " for (j=0;j<M;j=j+1) begin: last_row\n";

print OUTPUT " if (j==M-1)\n";

print OUTPUT " assign {carry[j][i],sum[j][i]} =(x[M-1]&y[N-

1])+carry[j][i-1]+carry[j-1][i];\n";

 print OUTPUT " else if (j==0)\n";

print OUTPUT " assign {carry[j][i],sum[j][i]} =!(x[M-

1]&y[j])+sum[j+1][i-1];\n";

print OUTPUT "else \n";

print OUTPUT " assign {carry[j][i],sum[j][i]} =!(x[M-

1]&y[j])+sum[j+1][i-1]+carry[j-1][i];end\n";

print OUTPUT "else \n";

print OUTPUT " for (j=0;j<M;j=j+1) begin : rest_rows\n";

print OUTPUT " if (j==0)\n";

print OUTPUT " assign {carry[j][i],sum[j][i]} =(x[j]&y[i])+sum[j+1][i-

1];\n";

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.4, May 2016

43

print OUTPUT " else if (j==M-1)\n";

print OUTPUT " assign {carry[j][i],sum[j][i]} =!(x[i]&y[N-

1])+carry[M-1][i-1]+carry[j-1][i];\n";

print OUTPUT "else \n";

print OUTPUT " assign {carry[j][i],sum[j][i]} =(x[j]&y[i])+sum[j+1][i-

1]+carry[j-1][i];end\n";

print OUTPUT "end endgenerate\n";

print OUTPUT "generate for (i=0;i<N;i=i+1)\n";

print OUTPUT " begin: product_lower_part\n";

print OUTPUT " assign product[i] = sum[0][i];\n";

print OUTPUT " end endgenerate\n";

print OUTPUT " generate for (i=1;i<M;i=i+1)\n";

print OUTPUT " begin: product_upper_part\n";

print OUTPUT " assign product[N-1+i] = sum[i][N-1]; \n";

print OUTPUT " end endgenerate\n";

print OUTPUT " assign product[M+N-1] = carry[M-1][N-1] + 1'b1; \n";

print OUTPUT " endmodule \n";

3.3 Division/Square Root/Inverse Square

Root
The development tool can design division, square root, and

inverse square root hardware and their testbenches

individually or all together using the hardware reuse principle.

These building blocks are designed using Newton-Raphson

[9][10][11][12] and CORDIC algorithms [13][14][15]. The

CORDIC algorithm is used in many different arithmetic and

elementary functions except for division, square root and

inverse square root. The division operation can be written as:

N = D . Q + R (1)

where N is dividend, D is divisor, Q is quotient, R is

remainder and | R | < | D |.ulp and sign (R) = sign(N). The

unit in the last position (ulp) represents the lowest term where

ulp = 1 for integer numbers and ulp = (radix)-n for n-bit

fractional numbers [16].

3.3.1 Newton-Raphson Division
The Newton-Raphson method shown in Equation (1) is a

well-known technique to find the root of nonlinear functions.

This root can be calculated using an initial value by

approaching the root quadratically [8][9][17][18]. The

accuracy of the division operation doubles in each iteration.

The initial value estimation can reduce the iteration number

and increase accuracy.

𝑋𝑖+1 = 𝑋
𝑖
−

𝑓(𝑋𝑖)

𝑓′(𝑋𝑖)
 (2)

The function 𝑓 𝑋 = 𝐷 −
1

𝑋
 can be defined to calculate

𝑋𝑖+1 =
1

𝐷
 where D is the divisor. After applying 𝑓 𝑋 and

𝑓′ 𝑋 to Equation (2), 𝑋𝑖+1 =
1

𝐷
 can be calculated as

𝑋𝑖+1 = 𝑋𝑖(2 − 𝐷𝑋𝑖) (3)

After nth iteration, the value of 𝑋𝑖+1 converges to 1/D and the

quotient can be calculated as Q = N (1/D). Design accuracy

and error can be improved by increasing the number of

iterations and better estimate of initial value [19]. The

hardware implementation of Newton-Raphson division and its

iteration steps are described in Figure 5 and Table 1,

respectively.

x

Mux_C

X0
0

1

N

Reg A

2's
Comp.

Reg B

Mux_B

0

1

Xi+1

Mux_A

D
0

1

Fig. 5: Newton-Raphson division method

Table 1 below shows the operation of the division block. In

cycle 1, pre-determined values of initial approximation X0 and

D are fetched into the multiplier. The product term is

calculated and its twos complement is stored in Reg B. In

cycle 2, this complemented value is multiplied by X0 and the

result is stored in Reg A as X1. After three iterations or six

clock cycles, the value of X3 converges to 1/D. After

calculation of 1/D, the quotient can be calculated as shown in

cycle 7 by multiplying X3 by N.

This algorithm and its performance depend on the number of

iterations and initial approximation. Calculation of 0.85/1.25

when X0=0.5 and X0=0.75 for different iterations are shown in

Figures 6 and 7, respectively.

Table 1. Newton-Raphson division cycles.

Operation

Cycle

Mux

A

Mux

B

Mux

C

Reg

A
Reg B

1 0 1 0 --- 2-D. X0

2 0 0 0 X1 ---

3 0 1 1 --- 2-D. X1

4 0 0 1 X2 ---

5 0 1 1 --- 2-D. X2

6 0 0 1 X3 ---

7 1 1 1 N.X3 ---

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.4, May 2016

44

Fig. 6: Calculation of 0.85/1.25 when X0=0.5

Fig. 7: Calculation of 0.85/1.25 when X0=0.75

The development system determines the number of iterations

and calculates the optimal initial value based on that iteration

as shown in Figure 8 below.

Fig. 8: Calculation of 0.85/1.25 for different initial

values.

3.3.2 Newton-Raphson Square Root and Inverse

Square Root
Hardware implementation of square root and inverse square

root are possible using Newton-Raphson algorithms that are

similar to division operations. This makes it possible to have

unified division, square root and inverse square root

operations. Inverse square root operations can be generated

using the Newton-Raphson algorithm. The function 𝑓 𝑋 =

𝑋2 −
1

𝐷
 can be defined to calculate 𝑋𝑖+1 =

1

 𝐷
 . After applying

𝑓 𝑋 and 𝑓′ 𝑋 to Equation (2);

𝑋𝑖+1 = 2−1𝑋𝑖(3 − D𝑋𝑖
2) (4)

After nth iterations, the value of Xi+1 will converge at the

square root of D. Calculations of the square root can be done

by multiplying the final value of Equation (4) by D. The

hardware implementation of Newton-Raphson square root and

inverse square root methods and their iteration steps are

described in Figure 9 and Table2, respectively.

2's
Comp.

Reg C

Reg A

Shift_R Add 1

X0

0

0

2

1

Mux_B

D 0

Mux_C

Mux_A 1

Reg B

1

x

Fig. 9: Newton-Raphson inverse-sqrt and sqrt methods.

Table 2. Newton Raphson inverse sqrt and sqrt cycles.

OC Reg A Reg B Reg C

1 X0
2 --- ---

2 D.X0
2 --- 2-1.(3 - D.X0

2)

3 2-1X0.(3 - D.X0
2) 2-1X0.(3 - D.X0

2) ---

4 X1
2 X1 ---

5 D.X1
2 --- 2-1.(3 - D.X1

2)

6 2-1X1.(3 - D.X1
2) 2-1X1.(3 - D.X1

2) ---

7 X2
2 X2 ---

8 D.X2
2 --- 2-1.(3 - D.X2

2)

9 2-1X2.(3 - D.X2
2) 2-1X2.(3- D.X1

2) ---

10 D.X3 --- ---

Table 2 above shows the operation of the inverse square root

and square root blocks. In cycle 1, X0
2 is calculated. This

value is stored in Reg A. In cycle 2, X0
2 is multiplied by D

and the result D X0
2 is stored in Reg A and 2-1(3 - D X0

2) is

stored in Reg C. In cycle 3, 2-1(3 - D X0
2) is multiplied by X0

and result 2-1 X0(3 - D X0
2) is stored in Reg A and Reg B.

This is the end of the first iteration. Registers A and B are

holding the value of X1 that will be used in the second

iteration. Iterations 2 and 3 are done in cycles 4 through 9, and

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.4, May 2016

45

the final result X3 will converge into
1

 𝐷
 . In cycle 10, 𝐷 is

calculated by multiplying
1

 𝐷
𝐷.

3.4 Sine and Cosine Implementations
Sine and cosine functions can be implemented using the

CORDIC algorithm. The CORDIC (COordinate Rotation

DIgital Computer) algorithm was first described in 1959 by

Jack E. Volder [12][13] to replace the analog resolver in the

B-58 bomber’s navigation system. Since then, quite a bit of

research has been done on the topic. This algorithm is used

today in digital filters, FFT, DFT, Kalman filters, adaptive

lattice structure, linear algebra applications, singular value

decomposition (SVD) calculations, Given’s rotation and

QRD-RLS filtering [20].

The CORDIC algorithm is based on two modes; vectoring and

rotation. This algorithm and its derivation over linear, circular

and hyperbolic coordinate systems can compute many

elementary functions described above.

Let us assume that point A rotates to B by an angle of rotation

angle θ, as shown in Figure 10. This will create a new point

B(X’,Y’), and the relation of the new point B based on

previous point A and the rotation angle θ [7][14][15][20].

𝑥 = 𝑅. cos 𝛽 (5)

𝑦 = 𝑅. sin(𝛽) (6)

XX’

Y

Y’

R

θ

β

A(X,Y)

B(X’,Y’)

R

R

Fig. 10: Rotation of vector A(x,y) to B(x’,y’)

𝑥 ′ = 𝑅. cos 𝜃 + 𝛽 (7)

𝑦′ = 𝑅. sin(𝜃 + 𝛽) (8)

Using the trigonometric properties;

𝑠𝑖𝑛 𝜃 + 𝛽 = 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝛽 (9)

𝑐𝑜𝑠 𝜃 + 𝛽 = 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝛽 − 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 (10)

Putting (9) and (10) in (7) and (8)

𝑥 ′ = 𝑅. 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝛽 − 𝑅. 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝛽 (11)

𝑦′ = 𝑅. 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝛽 + 𝑅. 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝛽 (12)

Putting (5) and (6) in (11) and (12)

x′

y′ = 𝑐𝑜𝑠 𝜃
1 −𝑡𝑎𝑛 𝜃

𝑡𝑎𝑛 𝜃 1

x
y (13)

𝑥 ′ = 𝑐𝑜𝑠 𝜃 𝑥 − 𝑦. 𝑡𝑎𝑛 𝜃 (14.a)

𝑦′ = 𝑐𝑜𝑠 𝜃 𝑥. 𝑡𝑎𝑛 𝜃 + 𝑦 (14.b)

In this iteration, the value of 𝑡𝑎𝑛 𝜃 can be chosen in terms of

power of 2. This will make it easy to implement as hardware

because ∓2−𝑖 is simply an L-R shift. This transformation can

be done by a sequence of smaller angle rotations (𝜃𝑖) in

which,

𝜃 = 𝜃𝑖

𝑛

𝑖

 (15)

And by using this Equation [13] can be written as;

𝑥i+1

𝑦i+1
 =

𝑐𝑜𝑠 𝜃i − 𝑠𝑖𝑛 𝜃i

𝑠𝑖𝑛 𝜃i 𝑐𝑜𝑠 𝜃i

𝑥i

𝑦i
 (16)

𝑡𝑎𝑛 𝜃𝑖 = ∓2−𝑖 (17)

𝜃𝑖 = ∓𝑡𝑎𝑛−1 2−𝑖 (18)

In addition, the value of the product of the 𝑐𝑜𝑠 𝜃 will be

constant. This value is known as Ki (scaling factor).

𝐾𝑖 = 𝑐𝑜𝑠 𝜃i

𝑛

𝑖=0

 (19)

𝐾𝑖 = 𝑐𝑜𝑠 ∓ 𝑡𝑎𝑛−1 2−𝑖

𝑛

𝑖=0

 (20)

Using the trigonometric property;

𝑐𝑜𝑠 𝑡𝑎𝑛−1 𝛼 =
1

 1 + 𝛼2
 (21)

Equation (20) scaling factor would be

𝐾𝑖 =
1

 1 + 2−2𝑖

𝑛

𝑖=0

 (22)

This scaling factor value will be constant for large n (iteration

number). Using the Equations (18) and (22) in Equation (16)

the following may occur.

𝑥𝑖+1 = 𝐾𝑖 . 𝑥𝑖 − 𝑦𝑖(∓2−𝑖) (23)

𝑦𝑖+1 = 𝐾𝑖 . 𝑦𝑖 + 𝑥𝑖(∓2−𝑖) (24)

and

𝑥𝑖+1 = 𝐾𝑖 . 𝑥𝑖 − 𝑑𝑖 . 𝑦𝑖(2−𝑖) (25)

𝑦𝑖+1 = 𝐾𝑖 . 𝑥𝑖 + 𝑑𝑖 .𝑥𝑖(2−𝑖) (26)

The rotation of the angle must be updated. This will introduce

a new set of equations:

𝑧𝑖+1 = 𝑧𝑖 − 𝑑𝑖 . 𝑡𝑎𝑛
−1(2−𝑖) (27)

Values for 𝑡𝑎𝑛−1(2−𝑖) can be stored in the memory. Variable

di is the direction of the rotation and its value depends on zi.

This may be represented as shown below:

𝑑𝑖
1
−1

 𝑧𝑖 ≥ 0
 𝑧𝑖 < 0

 (28)

After the description of the vectoring mode operation, a

general description of CORDIC algorithm for linear, circular

and hyperbolic coordinates using vectoring and rotation

modes can be given as shown below [14] [20].

𝑚 =
1
0
−1

𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠
𝑙𝑖𝑛𝑒𝑎𝑟 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠
ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

 (29)

𝑥𝑖+1 = 𝑥𝑖 − 𝑚 ∝𝑖 𝑦𝑖2
−𝑖 (30)

𝑦𝑖+1 = 𝑦𝑖 +∝𝑖 𝑥𝑖2
−𝑖 (31)

𝑧𝑖+1 =

𝑧𝑖 − ∝𝑖 𝑡𝑎𝑛−1 2−𝑖

𝑧𝑖 − ∝𝑖 𝑡𝑎𝑛ℎ−1 2−𝑖

𝑧𝑖 − ∝𝑖 2−𝑖

𝑖𝑓 𝑚 = 1
𝑖𝑓 𝑚 = 0
𝑖𝑓 𝑚 = −1

 (32)

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.4, May 2016

46

Table 3. CORDIC shift sequences and scaling factor

Coor.

System

M

Shift Sequence

Sm,i

Convergence

αmax

Scale

Factor Km

(n→∞)

1 0,1,2,……,i,…. 1.74 1.16676

0 1,2,……,i+1,…. 1.0 1.0

-1 1,2,3,4,………. 1.13 0.83816

Table 4. CORDIC processor for three coordinate

systems

Coor

Sys

Rot. /

Vec.
Initializing Result Vectors

1 Rot.

X0 = XS

Y0 = YS

Z0 = β

X0=1/K1,n

Y0 = 0

Z0 = β

Xn = K1,n(XS cos(β) - YS sin(β))

Yn = K1,n(YS cos(β) + XS sin(β))

Zn = β

Xn = cos(β)

Yn = sin(β)

Zn = 0

1 Vec.

X0 = XS

Y0 = YS

Z0 = β

Xn = K1,n(sgn(X0)(sqrt(x2+y2)

Yn = 0

Zn = β+tan-1(YS/XS)

0 Rot.

X0 = XS

Y0 = YS

Z0 = ZS

Xn = XS

Yn = YS+ XS YS

Zn = 0

0 Vec.

X0 = XS

Y0 = YS

Z0 = ZS

Xn = XS

Yn = 0

Zn = ZS+ YS / XS

-1 Rot.

X0 = XS

Y0 = YS

Z0 = β

X0=1/K-1,n

Y0 = 0

Z0 = β

Xn = K -1,n(XS cosh(β) + YS sinh(β))

Yn = K -1,n(YS cosh(β) + XS sinh(β))

Zn = 0

Xn = cosh(β)

Yn = sinh(β)

Zn = 0

-1 Vec.

X0 = XS

Y0 = YS

Z0 = β

Xn = K1,n(sgn(X0)(sqrt(x2+y2)

Yn = 0

Zn = β+tan-1(YS/XS)

Using Table 3 and Table 4, sin(θ) and cos(θ) values can be

calculated. The circular coordinate rotation mode CORDIC

can be used [14][20].

𝑥𝑖+1 = 𝐾. 𝑥𝑖 − ∝𝑖 𝑦𝑖2
−𝑖 (33)

𝑦𝑖+1 = 𝐾. 𝑦𝑖 + ∝𝑖 𝑥𝑖2
−𝑖 (34)

𝑧𝑖+1 = 𝐾. 𝑧𝑖 − ∝𝑖 𝑡𝑎𝑛
−1 2−𝑖 (35)

To start the iteration, the following initial values need to be

assigned.

𝐾 = 1.16676 (36)

𝑥0 =
1

𝐾
=

1

1.16676
 (37)

𝑦0 = 0, (38)

𝑧0 = 𝜃 (39)

Using these Equations MATLAB code to for design and

verification are shown in Figures 11, 12 and 13, respectively.

Fig. 11: MATLAB sine(θ) and cos(θ) calculations

Fig. 12: Sin(θ) and cos(θ) values between 0 < θ < 1.5

Fig. 13: Sin(θ) and cos(θ) values between 0 < θ < 1.5

3.5 Sinh, Cosh and e
(x)

Implementations
Sinh and Cosh functions can be implemented using the

CORDIC provided above in Table 3 and 4. To calculate

sinh(θ) and cosh(θ) values, the hyperbolic coordinate rotation

mode CORDIC can be used [14][20].

𝑥𝑖+1 = 𝐾. 𝑥𝑖 + ∝𝑖 𝑦𝑖2
−𝑖 (40)

.

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.4, May 2016

47

𝑦𝑖+1 = 𝐾. 𝑦𝑖 + ∝𝑖 𝑥𝑖2
−𝑖 (41)

𝑧𝑖+1 = 𝐾. 𝑧𝑖 − ∝𝑖 𝑡𝑎𝑛ℎ−1 2−𝑖 (42)

To start the iteration, the following initial values need to be

assigned.

𝐾 = 0.83816 (43)
.

𝑥0 =
1

𝐾
=

1

0.83816
 (44)

After nth iteration, and using the Equations (40), (41) and

(42).

𝑥𝑛 = 𝑠𝑖𝑛ℎ(𝜃) (45)

𝑦0 = 𝑐𝑜𝑠ℎ(𝜃) (46)

𝑧0 = 0 (47)

An exponential function can be calculated using (45) and (46).

𝑒𝑥 = 𝑐𝑜𝑠ℎ(𝜃) + 𝑠𝑖𝑛ℎ(𝜃) (48)
.

MATLAB representation of sinh, cosh, and exponential

functions and error analysis are shown in Figures 14, 15, and

16, respectively.

Fig. 14: MATLAB code for sinh(θ), cosh(θ) and

exponential function calculations

Fig. 15: Error analysis of sin(θ) and cos(θ)

Fig. 16: Sinh(θ), cosh(θ) and e
θ
 values between 0 < θ < 2

3.6 Matrix Operations
The library design platform can create library elements for

some basic matrix operations such as addition, subtraction and

multiplication. The library design matrix hardware and

verification as same as explained above in Figure 3.

3.6.1 Matrix Addition/Subtraction
Hardware implementation of matrix addition is done as shown

in Equations (49) and (50), respectively.

C = A + B (49)

𝑐𝑖 ,𝑗 = 𝑎𝑖 ,𝑗 + 𝑏𝑖 ,𝑗 𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 = 1,2, … , 𝑛 (50)

The conventional design is easy to understand and implement.

The design platform uses the equation that is given in

Equation (50) to calculate all elements of matrix C. The

matrix addition/subtraction block is shown in Figure 17

below.

b1,2 a1,2

c1,2

b1,1 a1,1

c1,1

bi,j ai,j

ci,j

n n n n n n

n n n

Memory

Memory

Fig. 17: Matrix addition/ subtraction block

3.6.2 Matrix Multiplication
Matrix multiplications [8][20] are heavily used in many signal

and image processing applications, such as adaptive

beamforming [16][18] and multiple-input-multiple-output

(MIMO) systems [18], and factorizations [21][22][23][24]

such as QR factorization and DCT. Matrix multiplication

requires operation elements (OE) such as addition and

multiplication. In a matrix multiplication, the number of OEs

depends on the matrix size. The relation between matrix size

and the number of OEs is quadratic. This made it difficult to

implement real time matrix multiplication libraries for larger

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.4, May 2016

48

matrices. The design platform uses traditional matrix

multiplication to generate library element. Matrix

multiplication of an m×r matrix A and r×n matrix B produces

a m×n matrix C [25].

Am,r × Br,n = Cm,n (51)

𝑎1,1 ⋯ 𝑎1,𝑟

⋮ ⋱ ⋮
𝑎𝑚 ,1 ⋯ 𝑎𝑚 ,𝑟

𝑏1,1 ⋯ 𝑏1,𝑛

⋮ ⋱ ⋮
𝑏𝑟 ,1 ⋯ 𝑏𝑟 ,𝑛

 =

𝑐1,1 ⋯ 𝑐1,𝑛

⋮ ⋱ ⋮
𝑐𝑚 ,1 ⋯ 𝑐𝑚 ,𝑛

 (52)

where;

𝑐𝑖 ,𝑗 = 𝑎𝑖 ,𝑘 × 𝑏𝑘 ,𝑗

𝑟

𝑘=1

 (53)

This matrix multiplication requires m×n×[rM+(r-1)A]

arithmetic operations, where 𝑀 is for multiplier and 𝐴 is for

adder. For example; multiplication of A4,3 and B3,6 results in

C4,6. This operation requires 72 multiplication and 48 addition

operations. This shows that a 𝑛 × 𝑛 matrix multiplication

requires 𝑛3 multiplications and 𝑛2(𝑛 − 1) additions. The

number of multiplications in the matrix multiplication

operation increases by an exponent of three (𝑛3) with the

matrix size.

The hardware realization of a matrix multiplication focuses on

designing 𝑐𝑖 ,𝑗 due to the parallel nature of the system. In

general, calculation of 𝑐𝑖 ,𝑗 is done using a bottom-up

approach. The term 𝑐𝑖 ,𝑗 in Equation (53) can be written as;

𝑐𝑖 ,𝑗 = 𝑎𝑖 ,1 × 𝑏1,𝑗 + 𝑎𝑖 ,2 × 𝑏2,𝑗 + ⋯ + 𝑎𝑖 ,𝑛 × 𝑏𝑛 ,𝑗 (54)

Due to the matrix size choice of 𝑛 = 2𝑘 , the Equation 54

can be written as

𝑐𝑖 ,𝑗 = 𝑑1 + 𝑑2 + ⋯ + 𝑑𝑡 (55)

where;

𝑑𝑡 = 𝑎𝑖 ,2𝑡−1 × 𝑏2𝑡−1,𝑗 + 𝑎𝑖 ,2𝑡 × 𝑏2𝑡 ,𝑗 1 ≤ 𝑡 ≤
𝑛

2
 (56)

The hardware realization of Equation (56) is shown in Figure

18.

ai,2t-1

b2t-1,j

dt

ai,2t-1 × b2t-1,j
M

e
m

o
ry

M
e

m
o

ryai,2t

b2t,j ai,2t × b2t,j

Fig. 18: Hardware realization of 𝒅𝒕

This 𝑑𝑡 calculation block shown in Figure 18Fig is one of the

most basic and important blocks in matrix multiplication. Any

matrix multiplication can be done using only one of these

blocks, an adder and rounding scheme. However, this is

impractical for large matrices due to slow overall operation

and increase in error boundaries. There are many different

designs [26] that use different numbers of 𝑑𝑡 calculation

blocks to improve speed. The platform generates the libraries

based on the smaller block that is shown in Figure 18 above

and using this block larger blocks can be created as shown in

Figure 19 below.

Larger matrix multiplications can be realized by using these

blocks. A 32x32 matrix multiplication design block is shown

in Figure 20 below.

ai,2t-1

b2t-1,j

r

R
e

g
is

te
r

dt

Enable

r

R
e

g
is

te
r

Enable

r

R
e

g
is

te
r

r

R
e

g
is

te
r

Enable

2r

R
e

g
is

te
r

Enable

R
e

g
is

te
r

Enable

2r

2r

R
e

g
is

te
r

Enable

2x2

ai,2t

b2t,j

Fig. 19: Realization of 2x2 block

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.4, May 2016

49

4 x 4

2 x 2 2 x 2

Reg

2r2r

2r+1

4 x 4

2 x 2 2 x 2

Reg

2r2r

2r+1

8 x 8

Reg
2r + 2

4 x 4

2 x 2 2 x 2

Reg

2r2r

2r+1

4 x 4

2 x 2 2 x 2

Reg

r

2r2r

2r+1

8 x 8

Reg
2r + 2

Reg
2r + 3

b 18,j

r

a i,18

r

b 17,j

r

a i,17

r

b 20,j

r

a i,20

r

b 19,j

r

a i,19

r

b 22,j

r

a i,22

r

b 21,j

r

a i,21

r

b 24,j

r

a i,24

r

b 23,j

r

a i,23

r

b 26,j

r

a i,26

r

b 25,j

r

a i,25

r

b 28,j

r

a i,28

r

b 27,j

r

a i,27

r

b 30,j

r

a i,30

r

b 29,j

r

a i,29

r

b 32,j

r

a i,32

r

b 31,j

r

a i,31

16 x 16

d16 d15 d14 d13 d12 d11 d10 d9

4 x 4

2 x 2 2 x 2

Reg

2r2r

2r+1

4 x 4

2 x 2 2 x 2

Reg

2r2r

2r+1

8 x 8

Reg
2r + 2

4 x 4

2 x 2 2 x 2

Reg

2r2r

2r+1

4 x 4

2 x 2 2 x 2

Reg

r

2r2r

2r+1

8 x 8

Reg
2r + 2

Reg
2r + 3

b 2,j

r

a i,2

r

b 1,j

r

a i,1

r

b 4,j

r

a i,4

r

b 3,j

r

a i,3

r

b 6,j

r

a i,6

r

b 5,j

r

a i,5

r

b 8,j

r

a i,8

r

b 7,j

r

a i,7

r

b 10,j

r

a i,10

r

b 9,j

r

a i,9

r

b 12,j

r

a i,12

r

b 11,j

r

a i,11

r

b 14,j

r

a i,14

r

b 13,j

r

a i,13

r

b 16,j

r

a i,16

r

b 15,j

r

a i,15

16 x 16

d8 d7 d6 d5 d4 d3 d2 d1

Reg
2r + 4

Ci,j

32 x 32

Fig. 20: Realization of 32x32 block

4. CONCLUSION
An area efficient, reconfigurable HDL library development

platform for Arithmetic and Matrix Operations is designed for

digital design and verification. The platform generates

dynamic design libraries and verification files to improve

design and verification of overall systems. Based on design

complexity and required changes, TTM can be improved by

up to 60%. Even though this platform is not true HLS, it

could be considered as hybrid HLS. Any designed system can

be reconfigured at any time in any way using the dynamic

libraries without going through the same design and

verification hassle. MATLAB-based verification makes it

possible to use all the features of MATLAB for faster and

more efficient verification. The Perl-based design makes it

possible to use all important text manipulations in Perl

language. Even though command line user interface is user

friendly, it creates some hassle for users when the library size

increases.

The future development platform will integrate a user friendly

GUI using Perl/Tk. Another future goal is to make this

platform totally open source by using only Iverilog and

replacing MATLAB with Octave. In addition, current matrix

libraries are limited to addition, subtraction and matrix

multiplication. The future development platform will include

some important matrix factorizations such as QR and LU

factorizations, and Strassen based matrix multiplication for

area optimization.

5. ACKNOWLEDGMENTS
Author thanks to Xilinx [6] and MATLAB for their support

for this research.

6. REFERENCES
[1] Andrieux, J., M. Feix, G. Mourgues, P. Bertrand, B.

Izrar, and V. Nguyen. "Optimum Smoothing of the

Wigner Ville Distribution." IEEE Transactions on

Acoustics, Speech, and Signal Processing 36.5(1987):

764-769.

[2] Adler, J., K. Delgado, and B. Rao. "Comparison of Basis

Selection Methods." Proceeding of IEEE Asilomar

Conference on Signals, Systems, and Computer

Frequency and Time Scale Analysis (1996): 252-257

[3] Aslan, S., Oruklu, E., and Saniie J., “A high-level

synthesis and verification tool for fixed to floating point

conversion”, IEEE International Midwest Symposium on

Circuits and Systems, 2012, Pages, 908-911.

[4] Desmouliers, C., Aslan, S., Oruklu E., Saniie, J., Vallina,

F.M., “HW/SW co-design platform for image and video

processing applications on Virtex-5 FPGA using PICO”

IEEE International Conference on Electro/Information

Technology, 2010, Pages, 1-6.

[5] Chen, W. The VLSI Handbook. Boca Raton: CRC

Publisher, 2007.

[6] Xilinx. (2016), http://www.xilinx.com/

[7] Kilts, S. Advanced FPGA Design Architecture,

Implementation, and Optimizations. New York: Wiley

Inter-Science, 2007.

[8] Stine, J. E. "Digital Computer Arithmetic Datapath

Design using Verilog HDL", Norwell, Massachusetts,

Kluwer Academic Publishing, 2004.

[9] Lin, Ming-Bo, "Digital System Design and Practices

Using Verilog HDL and FPGAs", Singapore, Wiley

Publishing, 2008.

[10] Joseph Cavanagh, " Computer Arithmetic and Verilog

HDL Fundamentals ", Boca Raton, FL, CRC Press,

Taylor & Francis Group, 2010.

[11] Flynn, M. J., and S. F. Oberman. "Division Algorithms

and Implementations." IEEE Transactions on Computers

46.8 (1997): 833-854.

[12] Schulte, M. J., and L. K. Wang. "Decimal floating-point

square root using Newton-Raphson iteration."

Application-Specific Systems, Architectures and

Processors (2005): 309 -315.

[13] Volder, J. "The CORDIC Trigonometric Computing

Technique." IEEE Transactions Electronic Computers

8.3 (1959): 330-334.

[14] Striling, W. C., and T. K. Moon. Mathematical Methods

and algorithms for Signal Processing. New Jersey:

Prentice Hall, 2000.

[15] Andraka, R. "A survey of CORDIC algorithms for

FPGAs." Proceedings of the 1998 ACM/SIGDA sixth

international symposium on Field programmable gate

arrays (1998): 191-200.

[16] Lang, T. M., and D. Ercegovac. Digital Arithmetic. San

Francisco: Morgan Kaufmann, 2004.

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.4, May 2016

50

[17] Flynn, M. J., and S. F. Oberman. "Division Algorithms

and Implementations." IEEE Transactions on Computers

46.8 (1997): 833-854.

[18] Swartzlander, E.E. Jr., and W.L.Gallagher. "Fault-

Tolerant Newton-Raphson and Goldschmidt Dividers

Using Time Shared TMR." IEEE Transactions on

Computers 49.6 (2000): 588-595.

[19] Omar, J., E. E. Swartzlander Jr., and M. J. Schulte.

"Optimal Initial Approximations for the Newton-

Raphson Division Algorithm." Springer-Verlag Journal

of Computing 53.3-4 (1994): 233-242.

[20] Dehon, A., and S. Hauck. Reconfigurable Computing

The Theory and Practice of FPGA-Based Computing.

Burlington, Massachusetts: Elsevier, 2008.

[21] Teukolsky, S. A., W. T. Vetterling, B. P. Flannery, and

W. H. Press. "Numerical Recipes: The Art of Scientific

Computing." Numerical Recipes: The Art of Scientific

Computing, 3rd ed. New York, New York: Cambridge

University Press, 2007.

[22] Erisman, A. M., I. S. Duff, and J. K. Reid. Direct

Methods for Sparse Matrices. New York, United States

of America: Oxford University Press, 2003.

[23] Fujii, A, R Suda, and A Nishida. "Parallel Matrix

Distribution Library for Sparse Matrix Solvers."

Proceedings of the Eighth International Conference on

High-Performance Computing in Asia-Pacific Region

(2005): 219-226.

[24] Aslan, S., E. Oruklu, and J. Saniie. "Realization of area

efficient QR factorization using unified division, square

root, and inverse square root hardware." IEEE

International Conference on Electro/Information

Technology (2009): 245-250.

[25] Watkins, David S. Fundamentals of Matrix

Computations, 2nd ed. New York, United States of

America: John Wiley & Sons, 2002.

[26] Hendry, D.C., and A.A. Duncan. "Area Efficient DSP

Datapath Synthesis." Design Automation Conference

(1995): 130-135.

IJCATM : www.ijcaonline.org

