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ABSTRACT 

Research into complex networks (CN) has become a key topic 

of interest across many disciplines in recent times. Complex 

systems are naturally pervasive and man-made systems, and 

because CN could be regarded as the bedrock of complex 

systems they appear in a wide range of scenarios stretching 

from societal and environmental to biological and 

technological systems.  Stimulated by experimental and 

pragmatic analysis of interacted or connected systems such as 

the Internet, biological, and social networks, proponents in 

recent times have advanced diversified approaches and 

frameworks to aid in envisaging the performance of these 

systems. This paper presents a review in the field of CN, in 

particular, the outsets of degree distributions, the small-world 

effect, network correlations, clustering, synchronization, 

random graph models, models of network growth and special 

attachment, robustness and dynamical processes- interestingly 

taking place on networks. This review also aims at serving as 

a substratum for future research in the study area, particularly 

those pursuing their career synthetically in artificial 

intelligence. In the end, some important conclusions and 

possible research directions of CN that essentially need to be 

studied in the future are proposed. 

Keywords 
Complex network, scale-free networks, small world networks, 

synchronization 

1. INTRODUCTION 
In the framework of network theory, a CN is a graph 

or  network substantially with vital topological features that 

does not arise in simple networks such as lattices or random 

graphs but often occur in graphs modeling real world 

systems[1, 2]. The study of CN is a novel and vigorous area of 

scientific research largely motivated by the empirical study of 

real-world networks such as the social, biological and, 

computer networks. More so most of these networks display 

substantial amount of important topological features, with 

forms of connections between the elements that are not  

purely regular and purely random [3]. These features 

similarly comprise of mutuality, triad importance profile and 

other features in the instance of directed networks[4, 5]. On 

the contrary, a lot of the mathematical representations of the 

past studied networks such as lattices and random graphs, do 

not exhibit these features[5]. The utmost complex frameworks 

could be recognized by networks with a moderate amount of 

interactions[6]. This relates to the circumstance that the 

maximum information content (entropy) is obtained for 

medium probabilities. 

There are two eminent and considerably learnt classes of CN. 

These are scale-free networks [7] and small-world 

networks[8, 9], whose discovery and characterization are 

recognized case studies in the area under consideration. Both 

networks considerably have some explicit structural features; 

the power-law degree distributions with respect to the former 

and highly clustered, like regular lattices, hitherto have small 

distinctive characteristic path lengths, like random graphs for 

the latter[10]. Moreover, there has been a developing concern 

by many researchers in other facets of the structures of these 

networks as the learning of CN continues to grow in 

popularity and significance [11] as a result of the proliferation 

of social network.. 

More recently, the study of CN has been extended to networks 

of networks [12] and if those networks are codependent, they 

develop considerably to be more susceptible to haphazard 

failures and targeted attacks and exhibit cascading failures and 

first-order percolation evolutions [13]. 

The field continues to progressively grow at a fast pace, and 

has brought together researchers from many areas 

including mathematics, 

physics, biology, telecommunications, computer 

science, sociology, epidemiology, and others [14]. Ideas as a 

result of network science and engineering remained 

realistically useful to the analysis of genetic regulatory and 

metabolic networks; the modeling and design of scalable 

communication networks such as the conception and 

generation of complex wireless networks [15]; the 

formulation of vaccination stratagems for the regulation of 

disease; and a wide array of other practical issues. There has 

been a lot of research and regular publication on the field 

networks in some of the best noticeable scientific journals and 

vigorous financial backings in lot countries. It has been the 

topic of many conferences in a diversity of different fields, 

and has been the subject of several books both for the lay 

person and for the expert. 

2. SCALE FREE NETWORKS 
A network is termed scale-free [7] if its degree distribution, 

thus, the likelihood that a node chosen homogenously at 

random has a definite number of degree (links), obeys a 

specific mathematical function called a power law. The power 

law suggests that the degree distribution of these networks has 

no characteristic scale. In contrast, networks with a solitary 

distinct scale are slightly comparable to a lattice suggesting 

that every single node roughly has the identical degree. 

Examples of networks with a solitary scale include the Erdős–

Rényi (ER) random graph [16, 17]and hypercubes[18]. In a 

scale-free degree distribution networks, some vertices would 

have a degree with their orders of enormousness grander than 

the average and are mostly mentioned as hubs, although this 

maybe a bit ambiguous as there is no intrinsic threshold above 

which a node could be understood as a hub. If there were any  

such threshold, the network would not have been thought of  

as a scale-free[19]. 

An increasing interest in scale-free networks started in the 

early years which were allied with the reporting of discoveries 

of power-law degree distributions in everyday life networks 

such as the World Wide Web, the network of Autonomous 

https://en.wikipedia.org/wiki/Network_theory
https://en.wikipedia.org/wiki/Graph_(mathematics)
https://en.wikipedia.org/wiki/Topological
https://en.wikipedia.org/wiki/Lattice_graph
https://en.wikipedia.org/wiki/Random_graph
https://en.wikipedia.org/wiki/Random_graph
https://en.wikipedia.org/wiki/Random_graph
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systems (ASs), protein collaboration networks, networks of 

Internet routers (some), email networks, and many more. 

However, most of these  power laws fell prey when subjected 

to laborious statistical testing, but many of the networks 

generally genuinely exhibits the more general idea of heavy-

tailed degree distributions before finite-size effects occur and 

are very diverse from what one would expect if edges existed 

autonomously and at random (i.e., if they followed a Poisson 

distribution). There are a number of ways for building 

networks with power-law degree distribution. The Yule 

process for instance is an established reproductive process for 

power laws, and has been acknowledged since 1925. 

However, it has by a lot of other names, some of which are 

The Gibrat principle by Herbert A. Simon, the Matthew 

effect, cumulative advantage and, preferential attachment 

by Barabási and Albert for power-law degree distributions. 

Recently, Hyperbolic Geometric Graphs have alternatively 

been proposed as hitherto another way of building scale-free 

networks as a result of its recurrent reinvention. 

Some networks connected with a power-law degree 

distribution and specific supplementary types of structure can 

be highly resistant to the random removal of vertices hence 

the vast majority of vertices remain connected together in 

a gigantic constituent [20]. These networks could be prone 

and liable to beset attacks intended at shattering the network 

rapidly. The critical vertices, the ones linked with the utmost 

degree, normally linked with the spread of disease either 

natural or artificial and are responsible for the spread of fads 

with regards to communication and social networks, when the 

graph is homogeneously or regularly random apart from the 

degree distribution. While random graphs have a distance 

averaging of order log N [8]  between nodes, with N being the 

number of nodes, scale free graph could have a distance of log 

log N and are referred to as an ultra-small world networks 

[21]. According to [11] certain nodes maybe more vastly 

coupled than others in any real world networks and to 

measure this outcome, we could assume pk to represent the 

segment of nodes that have d links. Here k is known as the 

degree and pk is the degree distribution. 

The simplest random graph replicas [22, 23] envisage a bell-

shaped Poisson distribution for pk which is extremely 

lopsided and falloffs much more sluggishly than a Poisson for 

a lot of real world networks [11]. For example, the 

distribution decays as a power law pk ~ k -y for the Internet 

backbone [24], metabolic reaction networks [25], the 

telephone call graph [26] and the World-Wide Web [27] (Fig. 

1a).  In reality, there are a diminutive nodes with many links  

and  have been dubbed „scale-free‟[28] [29] (Fig. 1d).   

The presence of two-point connectivity correlations does not 

extremely change the flaw for Scale-Free networks to 

prevalent distribution and this result is linked to the deviation 

of the nearest neighbors average connectivity, which is 

guaranteed by the connectivity comprehensive balance 

condition, to be satisfied in physical networks [30]. 

The scale-free property is common but not universal [31]. The 

pk  fits better for a power law by way of an exponential cutoff 

[32] in coauthorship networks (Fig. 1b); it is an exponential 

distribution in the power grid of the western US [31] (Fig. 1c); 

and is Gaussian [31] (Fig. 1d) in the social network of 

Mormons in Utah [33]. 

 

 

Figure 1: Graph of Coauthorship networks 

3. SMALL-WORLD NETWORKS 
A network is christened small-world [8] if by resemblance it 

exhibits the properties associated with the small-world 

phenomenon, and are generally known as six degrees of 

separation. The theory of small world, foremost defined by 

[34], and experimentally tested by [35], is the notion that two 

individuals are linked by just six degrees of separation 

unsystematically, i.e. the diameter of the corresponding graph 

of social connections is not much larger than six. 

[8] Published the foremost small-world network ideal that 

interposes effortlessly by single parameter amongst a random 

graph and a lattice. Their model established that with the 

inclusion of just a few numeral of long ranged links, a regular 

graph, in which the diameter is relatively proportionate to the 

magnitude of the network, can be converted into a "small 

world" in which the average numeral of edges among some 

two vertices is very small expected to grow statistically as the 

logarithm of the size of the network, with clustering 

coefficient persistently being large. It is believed that real -

world networks such as the World Wide Web and the 

metabolic network and also a percentage of abstract graphs 

such as random graphs and scale-free networks portray the 

small-world property. There is an doubt connected with the 

term "small world” with respect to the scientific literature on 

networks, and in accordance with mentioning the size of the 

diameter of the network, it could also be seen as the co-

occurrence of a small diameter and a high clustering 

coefficient. The clustering coefficient is a measure that 

denotes the concentration of triangles in the network. For 

example, sparse random graphs diminishingly obligate a few 

clustering coefficient.  However real-world networks often 

have a coefficient expressively higher and this disparity is 

attributed to the fact that edges are correlated in real world 

networks as argued by Scientists. 

Research has shown that, high-speed communication channels 

could be offered by short paths among aloof parts of the 

system, thereby enabling dynamical processes such as 

synchronous harmonization that necessitates information flow 

and coordination universally. Further research that proceeded 

along countless fronts and several experimental applications 

of small-world networks have been carried out and also 
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documented, in areas stretching from business to cell biology 

[25, 31, 32, 36-40]. Furthermore, the small-world networks 

are found to be theoretically behaving like Rorschach test in 

which different scientists have dissimilar methodologies to 

problems subject to their disciplines or areas of study. For 

instance, computer scientists are usually faced with problems 

about algorithms and their complexity. [11] Indicated that 

graphs linked with a lot difficult search issues have a small-

world topology. [41] introduced a well-designed model of the 

algorithmic problem revealed by Milgram‟s original 

sociological experiment[35]on ways of identifying a short 

chain of acquaintances by linking yourself to an arbitrary 

target person, utilizing local information only, and he 

ascertained that the problem is effortlessly resolvable for 

certain categories of small worlds, and fundamentally 

intractable for others. 

Clustering locally and global exchanges could together affect 

the spread of contagious diseases, with consequences for 

vaccination strategies and the advancement of virulence [42-

45]. Neurobiologists have debated severally on the possible 

evolutionary importance of small-world neural topology that 

combines fast signal processing with coherent oscillations 

[46], and appeared neither like regular nor random 

architectures, and could be chosen by getting used to 

ironically sensual surroundings and motor demands [39]. 

Perchance the strongest response to the Rorschach experiment 

could have originated from the statistical physicists, who 

recognized immediately [47] that the toy model of [8] would 

yield to their techniques[48].  In its enhanced form the model 

begins with a circle of n nodes linked by an undirected 

acquaintances to its closest and next closest neighbors up to a 

certain range k. Shortcut connections are introduced amongst 

randomly designated pairs of nodes, with a probability (p) per 

connection on the fundamental lattice instead of being rewired; 

accordingly there exist naturally nkp shortcuts in the graph 

(Fig. 2). The question is: on average, to move between nodes, 

how many steps are needed to enroot the shortest path? If the 

average separation is denoted by l, it could be found that l 

falls abruptly close to p=0, endorsing that few shortcuts do 

undeniably constrict the universe melodramatically and as 

derived by [49] in the formulation below: 

 

𝑙 =  
𝑛

𝑘
 𝑓(𝑛𝑘𝑝)    (1) 

Where 

𝑓 𝑥 =  
1

2 𝑥2+2𝑥
 𝑡𝑎𝑛ℎ−1  

𝑥

 𝑥2+2𝑥
 (2) 

 

This solution is asymptotically precise in the limits n=∝ 

(large system size) and either nkp= ∝ or nkp=0 (large or few 

numerals of shortcuts). Figure 5 show that it also gives the 

correct qualitative behaviour for nkp » 1. [50] Enhanced this 

outcome by demonstrating a laborious distributional 

approximation for p, sideways with a bound on the error. 

 

 

Figure 2 Resolvable model of a small-world network [49]. 

 

4. UNDERSTANDING THE METRIC OF 

COMPLEX NETWORK 
A graph, denoted by G, consisting of a collection N of N 

nodes connected by a collection L of L links could be used to 

represent the topology of CN. Graphs with N nodes, in turn, 

are completely described as an N × N of adjacency matrix T, 

in which the entities or components tij = 1 if there exist a link 

between node i and node j, otherwise tij = 0. All entities tij of 

the adjacency matrix T are consequently either 1 or 0 and T is 

symmetrical for undirected graphs, and unsymmetrical for 

directed graphs, where there could be a link from i → j, but 

not in the contradictory bearing j → i. Undirected graphs are 

considerably easier to explore because the symmetry of T 

agreeably results in a prevailing assets such as real 

eigenvalues which are mostly complex with respect to non-

symmetric matrix and eigenvectors. The importance of links 

in CN varies from one link to the other and weights could be 

associated to links to distinguish some added assets such as 

cost, distance, capacity, and structure amongst other things. 

The matrix T, assumes the same structure of the weighted 

adjacency matrix P, just that the element Pij is a real number, 

that typifies some assets of the link[51]. The assembly of all 

link weights associated with a graph is called the link weight 

structure. Surprisingly, there are basically few networks for 

which this link weight structure, for instance the distances in 

transportation networks is known, but the sum of money 

transfer among banks, the delay in the Internet, the strength of 

the interaction in the human brain, reaction quantifiers in 

metabolic networks, and many more, may are/maybe difficult 

to realized. 

Topological graph measurements such as the link 

betweenness, the nodes degree, the shortest path from I to j; 

hopcount, the clustering coefficient, the edge/link 

connectivity, etc could be computed from adjacency matrix 

[51-53]. Another type of metrics are spectral metrics, whose 

interest instigates from the point that the eigenvalues of a 

graph are a unique fingerprint [54, 55] such as the spectral 

gap, the biggest eigenvalue of the adjacency matrix; spectral 

radius, the algebraic connectivity, etc. the spectral domain 

consisting of the eigenvectors and eigenvalues of the 

adjacency matrix T possesses the same information as the 

topology domain specified by T. However, in disparity to 

topological measurements, spectral metrics need further 

mathematics and lack the provision of intuition[56]. 

Dynamics Of Complex Networks 

The processes of network constitute the core of CN aside its 

topological structure. They tell why the network is 

constructed or created and they give value to a complex 

network. Examples of such processes or services include the 

transfer of IP packets in the instance of the Internet, the 

communication between functional regions of the brain, the 

blowout of rumors and news in a social network, and the 

transport of cars in a road network. In most cases, there are 

concerned in knowing whether the procedure is stable, phase-

transitions [57] or forms of self-organization occur and how it 

behaves when the network grows (scaling laws) or is modified 

(removal or adding of subgraphs). The virus spread [58] and 

synchronization [59, 60] are reasonably well-understood 

examples.  

Another difficult issue is the learning of the dealings among 

the processes on the network and the core network itself. For 

instance, when there exist a viral attack on a network, the only 

protection against it would be the installation of anti-virus 

software in the situation of computer networks or of 

vaccinations or medications with respect to the human social 
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network. These movements do not alter the core topology. 

However, regulating the topology by sidestepping contact 

with infected nodes (e.g. computers or humans) brings about 

another type of protection that requires the comprehension of 

the coupling between graph and process (or function of the 

complex network)[56]. The last type of dynamics also obtains 

progressively more attention as many of the infrastructures are 

coupled [12]. For example, nearly all CN need energy, while 

the effect of digital communication to control these 

infrastructures increases. A failure occurring in the electricity 

distribution or in the control communication network may 

bring about failures or unexpected behavior in the functioning 

of the complex network whose torrent effects are not well 

understood. 

More so, another theme is to comprehend how biological 

processes in nature attain such an amazing adaptively and 

resilience against external factors. For example, the 

Alzheimer disease is only diagnosed with certainty when over 

80% of the links in the brains are destroyed [56].   

Robustness of Complex Networks 

One needs to be sure or convinced that the network is suitable 

or good with concerns to the issues that is essential to be 

handled throughout the construction and maintenance of a CN 

for the reasons for which it was designed for as could be 

understood as in Fig. 3 below.   For instance, an Internet 

service provider would like to know if the present state of his 

network is good or not same with a doctor who may want to 

know whether the functional network state of his patients‟ 

brain is normal. The above questions are ill-posed hence 

needs to be visibly detailed or defined suitably. The 

apprehensions highlighted above have constrained the 

computation of robustness value, R-value of a given network 

at a specific period of time that concerns the service and the 

topology to ascertain the goodness of a complex network. The 

R-value is a performance pointer that is pertinent for the 

service and normalized to the interval [0, 1]. Thus, R = 0 

corresponds to absence of network “goodness” and R = 1 

reflects perfect “goodness”. An example of a performance 

measure is a graph metric such as the average hop count. One 

of the reasons for a network robustness framework is to 

recommend an approach that elucidates and computes an R-

value that symbolizes a level of robustness and to interpret R-

values[61]. 

The reckoning of the R-value could be an aspect of periodic 

routine or an event-triggered network 

maintenance/management operation.  As could be noticed 

from Fig. 3 below; the current R-value is matched with the 

minimal desired one, RT  and either the R-value is sufficient in 

which case that ceases from taking any counteractive action, 

or the R-value is too low, in which case a modification to 

advance the graph is essential. The second objective of a 

network robustness structure is to propose effective, possibly 

optimal policies as to how a graph could be amended to 

upsurge its R-value subject to some cost criterion[56]. 

 

Figure 3: The flow chart of the high level goal to achieve 

network robustness [56] . 

Majority of graph metrics are not conjointly independent, and 

that their degree of correlation is graph specific [61]. Hence, 

collection of metrics alone is not adequate to differentiate 

them. Moreover, scaling a graph by increasing the numeral of 

nodes N or link L induces variations in the metrics, which 

brands it challenging to compare networks of different sizes. 

A special branch of robustness is network security. In spite of 

the regular news reporting of intrusion and attacks of 

important computer systems, ranging from banks to 

governments, it is fair to mention that little systematic 

network theory is available to secure a network, aside some 

network immunization strategies[62, 63]. Most efforts today 

are heuristic, or unknown, since privacy and secrecy play an 

obscuring part in the domain of (network) security. A 

mammoth potential to employ the devices of complex 

network concept to design and construct supplementary 

secure networks, subject to confidentiality and low cost 

constraints, is lurking, but expertise appears lost. 

Synchronization In Complex Networks 

Synchronization procedures in populations of elements 

intermingling in the neighborhood are in the radar of intense 

research in chemical, physical, technological, biological, and 

social systems[64]. The countless efforts dedicated to 

understanding synchronization phenomena in natural systems 

have now taken pro of the present theory of CN. 

Synchronization was first studied mathematically (based on 

Fourier integrals) by [65, 66]  who acknowledged its ubiquity 

in the natural world and speculated that it was associated in 

the generation of alpha rhythms in the brain but regrettably it 

fell on to it dead ends. 

It is recognized that synchrony is entrenched in human life 

from the metabolic processes in the cells to the highest 

cognitive tasks performed as a group of individuals. For 

example, the outcome of synchrony has been labeled in 

experiments of individuals interacting, or at labor with an 

experience of collective, non-directive dialogue, rhythm or 

song, or of groups of kids interrelating to an insentient beat. 

The lack of such synchrony could result unconscious pressure, 

when goals could not be acknowledged nor achieved because 

the members are “out of sync” [67]. 

There are numerous capital workings that symbolized a 

revolution in the appreciation of these phenomena as 

segments of the struggles for the scientific account of 
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synchronization phenomena. The architect of the pendulum 

clock learnt an unusual “kind of sympathy” in two pendulum 

clocks suspended side by side of each other and when swayed 

at 180 degrees out of phase with approximately the same 

frequency; the pendula were troubled, the anti-phase state was 

reinstated within 30mins and persisted indefinitely[68]. It was 

then presumed that, the critical communication for this result 

came from ”imperceptible activities” of the usual frame 

backing up the dual clocks. From that time on, the 

phenomenon got into the focus of scientists. Synchronization 

encompasses, at least, two entities in communication, and the 

conduct of not many interacting oscillators has been 

extensively deliberated in mathematics and physics literature. 

Nonetheless, the phenomenon of synchronization of huge 

populaces is a dissimilar encounter and needs different 

hypothesis to be disentangled. 

As stated in [64]Wiener did not make momentous 

mathematical advancement on the problem he modeled in his 

book”Cybernetics”, nor did anybody till Winfree came 

along”. [69]studied the dynamics of a huge population non-

linearly of feebly joined limit-cycle oscillators with inherent 

frequencies that were dispersed about certain mean value, 

based on some approved likelihood distribution. The 

breakthrough here was to cogitate the biological oscillators as 

phase oscillators, deserting the amplitude. Working within the 

structure of a mean field ideal, Winfree revealed that 

population of not identical oscillators could demonstrate an 

extraordinary accommodating phenomenon and huge variance 

of frequencies distribution may lead the oscillators 

incoherently running along each one with its natural 

frequency. This phenomenon relic when the variance is being 

reduced pending the span of an assured threshold. However, 

at a certain the threshold below, the oscillators activates to 

harmonize instinctively [70].   

Even though Winfree‟s tactic evidenced to be fruitful in 

labeling the appearance of spur-of-the-moment order in the 

system, it was founded on the foundation that every oscillator 

senses the same array of connections. 

However, this all-to-all connectivity among entities of a huge 

population is difficult to apprehend in the real-world. When 

the numeral of entities becomes adequately huge, the array is 

seen mismatched with physical constraints as may be the case 

of cost or energy minimization, and generally with the 

infrequent reflections on long ranged exchanges in systems 

designed by macroscopic entities. The precise native 

connectivity assembly of the entities was absent in these and 

subsequent approaches [64].  

[64]introduced a modest prototypical of network arrangement, 

initially specifically anticipated to present the connectivity 

substrate in the problematic of harmonization or 

synchronization of cricket chirps, which showed a huge 

magnitude of harmonization over an elongated distances as if 

the insects were undetectably connected. Remarkably, this 

masterpiece did not seize as a new impact to synchronization 

or harmonization theory but instead the kernel for the 

contemporary theory of CN [8]. Furthermore, addition of 

small numeral of random connections starting with a regular 

lattice decreases the distance between nodes drastically, as 

depicted by Fig. 5 below. This feature, known as small-world 

effect, had been first reported in an experimentation piloted by 

[71] fact-finding the average path length with regards to social 

networks of individuals residing in the US. The analysis of 

harmonization procedures has not only profited from the 

improvement in the apprehension of the topology of CN, but 

also its envelopment to the comprehension of general 

promising properties of networked systems. One objective 

that motivated this review paper is to revise precisely the 

exploration assumed as of now order to gain an insight into 

aftermath synchronization phenomena by the topological 

substrate of exchanges, of CN. 

𝑥 𝑖 = 𝑓 𝑥𝑖 + 𝑐  𝑎𝑖𝑗
𝑁
𝑗=1  𝐻  𝑥𝑗               𝑥𝑖  𝜖 𝑅𝑛              𝑖 =

1,2,3, … , 𝑁                                  
(3) 

Complete state synchronization: 

lim𝑡→∝ ||  𝑥𝑖 𝑡 −  𝑥𝑗   𝑡 ||2 =  0,                  𝑖, 𝑗 =  1,2,3, … , 𝑁  

State Synchronization: 

 𝑥1  𝑡 ⟶ 𝑥2  𝑡  → ⋯ → 𝑥𝑁   𝑡 → 𝑆(𝑡) 

𝑆  𝑡 = 𝑓(𝑠(𝑡))     (e.g. equilibrium point, periodic orbit, 

chaotic orbit) 

𝑥1 =  𝑥2 = ⋯ =  𝑥𝑁  Synchronization manifold 

𝑆 𝑡 ∈ 𝑅𝑛   Synchronized state 

Synchronization criteria 

Eigenvalues of L = -A:  0 =  𝜆1 < 𝜆2  ≤ ⋯  ≤  𝜆𝑁 

Transversal subspace (⊥ synchronization manifold):  

⨀ = (𝑥 = [𝑥1
𝑇 , 𝑥2

𝑇 , … , 𝑥𝑁
𝑇 ]𝑇 ∈ 𝑅𝑛𝑁 ∶   𝑆𝑗

𝑡

𝑁

𝑗−1

𝑥𝑗 = 0) 

Here, [𝑆1
𝑡 , 𝑆2

𝑡 , … , 𝑆𝑁
𝑡 ]𝑇 is the left eigenvector of 𝜆1 = 0 

Synchronization occurs if 𝑐𝜆2 = 0                  𝑜𝑟 𝑖𝑓 
𝜆𝑁

𝜆2
 ∈  𝑆2  

As could be seen in figure 4 below; synchronization occurs at 

II and III where 𝑆1 = (𝛼1,∞)  and 𝑆2 = (𝛼2, 𝛼3) . However 

synchronization did not happen at region I. 

 

Figure 4 

Synchronization in regularly combined or coupled networks is 

categorized into global and locally coupled networks. 

Globally coupled network will usually synchronize so long as 

the size is adequately large, no matter how small the 

combination strength c is.      𝜆2 = ⋯ = 𝜆𝑁 = 𝑁 

 

Figure 5: Small World Net [71] 



International Journal of Computer Applications (0975 – 8887) 

Volume 141 – No.5, May 2016 

38 

Locally coupled networks will usually not synchronize if its 

size is too large no matter how huge the combination strength 

c is.                   𝜆2 = 4  𝑠𝑖𝑛2𝐾/2
𝑗=1  (𝑗𝜋/𝑁)            (4) 

Synchronization in small-world networks can greatly be 

achieved or enhanced by adding a tiny fraction of long-ranged 

connections to the construction of the regularly coupled 

locally network as revealed in fig 6 below. 

 

 

 

Figure 6: Synchronization in small world networks[72] 

In scale-free networks, the principle of synchronization is 

about the same as that of the star-shaped network, mainly 

dogged by the one-to-one relations between the central node 

and each of the bordering or adjacent nodes. This is due to the 

extreme inhomogeneous connectivity distribution of scale-

free networks which has few pivots which play a similar role 

as a solitary center in a star-shaped network as depicted by fig 

7 below; 

 

Figure 7: Synchronization of SF networks [72] 

The topology or the framework of the network also has an 

impact on synchronization. For instance, synchronization that 

exists in small-world networks increases as small world 

features increases. Larger clustering coefficient (p=1, fully 

connected) implying smaller path length (𝜆𝑁/𝜆2) results in a 

better synchrony as revealed in fig. 8 (a) below. And in scale-

free networks, synchronization increases as the power-law 

exponent increase with regards to the network topology as 

depicted by fig. (b) below; however, synchronization in both 

cases (scale-free networks and small-world) will also increase 

as their node betweenness decreases with respect to network 

topology therefore there is a strong association between 

betweenness and synchronization when dealing with 

homogeneous networks as  in fig. 8 (c).  

 

 

 

 

Figure 8 

But in the heterogeneous networks, there is no vivid 

correlation or association between betweenness and 

synchronization as could be seen in figure 9 below.  
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Figure 9: Graph of synchronization and betweeness [73] 

The synchronizability of networks could be heightened by 

perturbing the structure or organization of the network to 

eliminate maximal betweenness [73] and also by modifying 

the coupling structure to reduce the influence of the 

heterogeneity of degree and betweenness distributions [74]. 

The node with largest betweenness is replaced with several 

connected nodes to be certain that the shortest path that passed 

through the original node will go through one or two new 

nodes which reduce the utmost betweenness dramatically. 

Edges with large loads  can also (not only nodes with large 

betweenness) cause data traffic congestion, hence when such 

heavy loaded edges are also decoupled to redistribute the data 

traffic, the network becomes more efficient. This could be 

seen in fig 10 below; 

 

 

 

Figure 10: Synchronization through network structure 

perturbation [74] 

5. COMPLEX NETWORK 

ALGORITHMS AND 

COMPUTATIONS 
Awkwardly in CN, most optimization issues usually 

exemplified in graphs are NP-hard, or polynomial hard which 

goes to propose that an optimal solution may not be computed 

for large CN and that heuristics is regularly the solitary 

alternative. In the instance of both virus spread and oscillators 

synchronization, the commencement of an infested network or 

coupling between oscillators is in reverse relational to the 

spectral radius λ1 (A) of the graph. More so, for the 

amplification of the threshold, links or nodes could be 

removed. The elimination of those links that hugely lower the 

spectral radius or the least number of links to shift λ1 (A) 

below some desired threshold is NP-hard [75]. The problem 

of searching for the best path subject to several constraints 

(such as distance, time and energy-consumption) is known as 

QoS-routing [76], and an optimal placement of regenerators in 

photosensitive networks [77] are both also NP-hard issues. 

For NP-complete problems, precise algorithms guzzle 

prohibitively long computation time so that heuristics are 

aimed to trade-off computation time for accuracy. Much effort 

has been fervent to heuristic algorithms that provide a solution 

that is guaranteed to not to further diverge than x% of the 

universal optimum solution. Sometimes exact algorithms 

work surprisingly well in a certain kind of the state space [76]. 

Often constraints can be selected to enable efficient solutions 

[78]. 

Furthermore, another essential challenge in massive networks 

is the simple magnitude of its size, which averts that all details 

of the graph can be uploaded into a normal computer. Large 

complex network have stimulated the research on local 

computations, where only a certain surrounding of a node is 

taken into account, instead of the global topology information. 

Examples are “gossiping” algorithms [79], breath-first search 

of social networks and web-crawling. The massive growth in 

data and network sizes has headed to a fresh kind of “sub-

linear” algorithms that only consider part of the input and 

consequently run in sub-linear time complexity. Since not all 

information is considered, exactness could not be certain. 

But through careful sampling, sub-linear algorithms might be 

capable to give acceptable bounds. Recently [80], some 

classical optimization problems have been approximated in 

sub-linear time. 

Beside the classical distributed computation, where a large 

problem is split over several computers, a new flavor of this 

concept has been presented as “cloud-computing”, where jobs 

are allotted to an amalgamation (“cloud”) of servers and 

computing devices, utilized through a network. 

6. RELATED WORK AND 

APPLICATIONS OF COMPLEX 

NETWORKS 
The brain network, consisting of over N = 1011 neurons and L 

= 1014 interconnections, with an estimated total of 500 000 km 

wiring 6 is considered or seen as one of the most CN. There 

are principally two core approaches in which complex 

network analysis can be engaged to understand the brain of 

humans [81], of which the functional brain unit is easier to 

measure. Understanding functional brain nets through 

topological measures such as degree, path length, clustering, 

assortativity, modularity [82] and/or by spectral metrics is still 

regarded as a sizzling topic of research. The applications this 

domain is massively huge: besides monitoring healthy people 

to understand emotion, memory and IQ [83], the major social 

and financial impact lies in understanding illnesses such as 

Alzheimer‟s disease and other categories of dementia, brain 

tumors [84] epilepsy and schizophrenia. 

One of the recent applications of CN was a research 

conducted by [85] to discover whether Complex personal 

networks have any relationship with massive cognitive 

operative in the aged. Tougher involvement of the aged in 

social events or undertakings and grander entrenchments in 

networks is mostly contended to cushion or safeguard 

cognitive deterioration and lesser threats of dementia. It is 

believed that, when older people interact with other people the 

brain trained thereby enhancing the functioning of their 

cognitive. 
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Basing on the “use-it-or-lose-it” postulate [86] and on the 

ecological complexity premise[87], [85]suggested that 

inordinate network complexity thus being involved with 

diversity of  social relationships or multiple roles in personal 

networks, could offers older adults with boosted intellectual 

engagement [88],[89], thereby stimulating neural activity and 

maintaining cognitive capabilities in the end thereafter.. 

In their investigation, it was found out those older persons 

recording greater numbers of association types in their 

network were characterized by advanced cognitive 

capabilities both in specific and global terms than their 

colleagues recording fewer types. Importantly, a reduction in 

the complexity of a network was correlated to deterioration in 

cognitive functioning. These outcomes were neither 

enlightened by magnitude of the personal network nor by 

existence of explicit relationship types in the network, which 

could ascertain the conception that complexity may possibly 

convey an added remunerations established on the machinery 

of stimulated brain stashes. 

According to [85] there remained likewise suggestions for a 

cushioning outcome of network complexity on cognitive 

transformation above time. This outcome, nonetheless, existed 

non-considerably as dissimilarities in deterioration seemed to 

be somewhat negligible through diverse intensities or levels of 

network complexity. Still, the outcomes offered highlighted 

that CN with varied social relationships could perhaps add to 

enriched environments. These environments are cognitively 

challenging, they need exchanging and control between 

several settings, and expedite training of brain actions vital to 

neural plasticity [87, 90]. It appears rewards are not only 

gained by incorporation into massive personal networks, but 

also by the incorporation into certain network structures. 

Personal networks often change and shrink in future [91, 92] 

and such decrease in size of personal networks likely follows 

from deterioration in cognitive and physical functioning[93, 

94].  

[95] Recently used complex networks to address the issue of 

plagiarism. Plagiarism, a complex problem seen as the action 

of bestowing external wordings, ideas or thoughts, as persons 

own, without mention of the sources from which they were 

gotten. The progressive advancement of diverse digital 

document cradles existing on the Web has enabled the spread 

of the act, making its precise exposure a crucial task most 

especially for educational institutions. They proposed 

DOCODE 3.0; a Web system for educational establishments 

accomplishes automatic examination on huge quantities of 

digital documents relative to their degree of novelty. The 

system applies algorithms from multi data source to all these 

levels so as to execute an information fusion process.  

A more recent study looked at how complex systems are 

applied in the field of metabolic engineering, explicitly taking 

into consideration the density of these networks. The literature 

[96] examined how complexity affects engineering at the 

protein, genome ranks, and passageway inside an organism, 

and the apparatuses for controlling these matters to achieve 

high-performing strain designs. Quantifiable complexity 

measures and their applicability to metabolic engineering as 

against traditional engineering disciplines remained also 

discussed. They further emphasized that, as metabolic 

engineering evolves into progressively standardized, 

complexity examination procedures and tools will remain an 

essential chunk of engineering toolbox. 

 

7. CONCLUSION AND 

RECOMMENDATION 
In any complex system, there occurs a network that describes 

the associations among the components. There are a massive 

number of systems that are despondently complex all over, 

ranging from the society, thus a set of six billion individuals 

to communication systems that connects billions of equipment 

together on the one side, to computers and cell phones on the 

other side. The very survival or existence of man is 

entrenched in the ability of thousands of genes to work in a 

seamless fashion. The systems which seemed random at a 

glimpse, exhibits infinite marks of order and self-organization 

at a close inspection but their complexity could actually be 

apprehended by carefully considering their fundamental 

constituents. Their quantification, understanding, forecast and 

the ultimate control is the foremost rational challenge for the 

science of the 21st century. Human beings are bounded by 

complex networks hence need to apprehend the complexities 

involved and how they work. 

Although CN are not associated with any formal definition, its 

theory largely relies on graph theory for its topological 

structure, on probability theory to express distinguishing 

properties such as the degree and eigenvalue distributions and 

on dynamic systems theory to label the processes such as 

virus spread and synchronization on the network. However, 

there is still room for improvement as well as the necessity to 

carry out further research into its asymptotic scaling laws, 

topological metrics, new extremer graphs, and physical 

phenomena such as percolation, coupling, self-criticality, 

synchronization, emergent and cooperative behavior and 

other, commonly, nonlinear processes. Furthermore, there is 

opportunity for advance exploration in the area, most 

especially with the feature of the environment that inhibits 

these networks, structure and more so with concerns to 

control, synchronization and optimization. 
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