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ABSTRACT
The residue number system (RNS) has computational advantages
for large integer arithmetic because of its parallel carry
free, and high-speed arithmetic nature. However, magnitude
comparison is a very complex operation for RNS. This
paper presents a new comparison algorithm based on the
modification of Mixed-Radix Conversion II technique. The new
algorithm uses small modulo operations only and has a linear
time complexity in terms of the size of the moduli set.
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1. INTRODUCTION
The residue number system (RNS) [1, 2] as a non-positional
alternative to binary representation is popular in many high
performance arithmetic applications, such as digital signal
processing [3], cryptography [4], multiple errors detection
and correction [5]. RNS is defined by a set of moduli
{m1,m2, . . . ,mn} that are relatively prime integers (i.e., the
greatest common divisor between any two moduli is one). The
dynamic range of an RNS is given by M =

∏n
i=1mi. Any

integer X from 0 to M − 1 is represented in RNS by the n-tuple
〈x1, x2, . . . , xn〉, where xi = |X|mi

for all i = 1, 2, . . . , n and
|X|mi

is defined as xi ≡ X mod mi. Addition, subtraction and
multiplication on different moduli mi are done in parallel:

Z = X op Y →


z1 = |x1 op y1|m1

,

z2 = |x2 op y2|m2
,

. . .

zn = |xn op yn|mn
.

As a consequence, operations on large wordlengths can be split into
several modular operations executed in parallel and with reduced
wordlength [6]. Organizing such a level of parallelism using the
positional number systems is obviously not possible.

Unfortunately, due to the non-positional nature of the RNS, some
arithmetic operations such as magnitude comparison, division
and overflow detection are more complex in RNS than in
conventional binary systems. This difficulty prevents a wide variety
of general-purpose computations from taking advantage of the
residue arithmetic [7]. In this paper a brief survey of the methods
for comparing the magnitudes of numbers in RNS is presented, as
well as a new parallel comparison algorithm, which is based on
the modified Mixed-Radix Conversion II technique. The proposed
algorithm uses a small modulo mi operations only and has O(n)
time complexity, where n is the size of the moduli set.

2. RNS MAGNITUDE COMPARISON METHODS
The traditional technique for comparing numbers in RNS is based
on the Chinese remainder theorem (CRT) and involves computing
the binary representation of the number [2]:

X =

∣∣∣∣∣
n∑

i=1

wi|αixi|mi

∣∣∣∣∣
M

.

where wi = M/mi, and αi is the multiplicative inverse of wi

with respect to mi. In large dynamic ranges this method becomes
slow as it requires costly long integer multiplications by constants,
additions and large modulo M operation.

Mixed-Radix Conversion (MRC) is an alternative technique
used to estimate the magnitude of RNS numbers [1]. MRC
involves converting a number from RNS with moduli set
{m1,m2, . . . ,mn} to a Mixed-Radix System (MRS) with
bases m1,m1m2, . . . ,m1m2 · · ·mn−1, i.e., finding coefficients
a1, a2, . . . , an that satisfy the expression:

X = a1 + a2m1 + a3m1m2 + · · ·+ anm1m2 · · ·mn−1. (1)

Since MRS is a positional number system, it is easy to compare
the magnitudes of numbers in it. Assume that (a1, a2, . . . , an)
and (b1, b2, . . . , bn) are MRS representations of RNS numbers X
and Y , respectively. In this case, X > Y when an > bn, and
X < Y when an < bn; if an = bn then the digits an−1 and
bn−1, etc. should be compared in a similar way. If ai = bi for all
i = n, n − 1, . . . , 1, then X and Y are equals. Thus, comparison
of RNS numbers reduces to computing their MRS representations.
However, the classical MRC is a slow sequential method, which
requires O(n2) arithmetic operations. Therefore, with a large n, its
application would require high computational costs.
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Another approach is the Sum-of-Quotients Technique (SQT)
[8]. This approach formulates the problem of estimation of the
magnitudes of RNS numbers in terms of computing the indices
of diagonals laying out the n-dimensional space formed by RNS
moduli. The main drawback of SQT is that it requires handling of
large (log2 SQ)-bit values, where SQ =

∑n
i=1M/mi.

Other techniques for number comparison in RNS are based on the
parity checking [9] or the core functions [10]. The core functions
require an iterative process of descent and lifting to find the critical
core value. A different solution [9] to do the residue number
comparison assumes that all moduli of the moduli set are odd and
ROM lookup tables (LUTs) are mandatory to resolve the difficulty
in the determination of the operand parity [7]. There are methods of
number comparison for RNS with some special moduli sets [7,11].
Nevertheless, the scope of such systems is limited, particularly
when a large dynamic range is required.

3. MIXED-RADIX CONVERSION II
MRS representation for a number in n-moduli RNS can be
computed using the classical Szabo-Tanaka MRC algorithm [1].
This algorithm requires a total of n(n − 1)/2 residue arithmetic
subtractions and also a total of n(n− 1)/2 residue multiplications.
However, these multiplications cannot be eliminated or reduced,
and, moreover, these multiplications are nested operations, and
so cannot be performed in parallel [12]. Therefore, Szabo-Tanaka
MRC is considered inefficient for large n values.

In 2007, Akkal and Siy proposed a new technique for conversion of
RNS numbers to binary system through MRS, called MRC-II [13].
According to MRC-II, the following recurrence is computed:

Xi = aiMi−1 +Xi−1, 2 ≤ i ≤ n, n ≥ 2, (2)

where ai is the i-th MRC coefficient, Mi−1 =
∏i−1

k=1mk and
X1 = a1 = x1. Eventually Xn is a binary representation of X .
All coefficients ai are computed in advance and stored in LUTs.
Each i-th LUT (Tabmi

) is of the size mi log2mi. The LUT index
is the value ti = |xi −Xi−1|mi

for i ≥ 2. The LUT contents are
defined by the equality |xi −Xi−1|mi

= |aiMi−1|mi
.

Algorithm 1 computes MRS representation of RNS number
according to MRC-II.

Algorithm 1. Akkal-Siy Mixed-Radix Conversion

Input: X = 〈x1, x2, . . . , xn〉
Output: (a1, a2, . . . , an) satisfying the conditions of (1)
Precomputation: LUTs Tabm2

, . . . , Tabmn that contain all
values of ai. Mi =

∏i
k=1mk for all 1 ≤ i ≤ n− 2.

1: a1 ← X1 ← x1
2: t2 ← |x2 −X1|m2

3: a2 ← Tabm2
(t2)

4: for i = 3 to n do
5: Xi−1 ← ai−1Mi−2 +Xi−2
6: ti ← |xi −Xi−1|mi

7: ai ← Tabmi
(ti)

8: end for
9: return (a1, a2, . . . , an)

Thus O(n) operations only should be performed to compute all
MRC coefficients for X . Unfortunately, the described algorithm
is impractical since large integers Mi−2 should be manipulated
to determine the table index ti, which is used to select the MRC
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Fig. 1. Computation of the LUT indices ti for six-moduli RNS.

coefficient ai. Accordingly, Xi−1 will also be large, making it
hard and laborious to compute the difference between xi and Xi−1
followed by modulo mi reduction. A modified algorithm without
above drawback is discussed in the next Section.

4. PROPOSED ALGORITHM FOR COMPARING
NUMBERS IN RNS

Since completely convert of the RNS numbers into binary form is
not required for their comparison, to determine the index ti it will
only be enough to compute |Xi−1|mi

instead of Xi−1. From (2) it
follows that:

|Xi−1|mi
=
∣∣ai−1 |Mi−2|mi

+ |Xi−2|mi

∣∣
mi

(3)

for 3 ≤ i ≤ n and n ≥ 3.

Now, ti =
∣∣xi − |Xi−1|mi

∣∣
mi

is an index for selecting ai from the

table Tabmi
. Constants |Mi|mj

=
∣∣∏i

k=1mk

∣∣
mj

for all 1 ≤ i ≤
n − 2 and i + 2 ≤ j ≤ n are computed in advance. Algorithm 2
computes the MRS representation of RNS number based on (3).

Algorithm 2. Modified Mixed-Radix Conversion

Input: X = 〈x1, x2, . . . , xn〉
Output: (a1, a2, . . . , an) satisfying the conditions of (1)
Precomputation: LUTs Tabm2

, . . . , Tabmn . Constants |Mi|mj

for all 1 ≤ i ≤ n− 2 and i+ 2 ≤ j ≤ n.
1: a1 ← X1 ← x1
2: t2 ← |x2 −X1|m2

3: a2 ← Tabm2
(t2)

4: |X1|m3
← |x1|m3

5: for i = 3 to n do
6: for j = i to n do in parallel
7: |Xi−1|mj

←
∣∣ai−1 |Mi−2|mj

+ |Xi−2|mj

∣∣
mj

8: end for
9: ti ← |xi − |Xi−1|mi

|mi

10: ai ← Tabmi
(ti)

11: end for
12: return (a1, a2, . . . , an)
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The |Xi−1|mj
variable, computed in the inner loop when i = j, is

used to determine LUT index ti, while other variables, computed
in the inner loop when i < j ≤ n, are used in the next iteration of
the outer loop. For example, Fig. 1 shows the process of computing
the LUT indices ti (i ≥ 3) for an RNS with six-moduli set.

All iterations of inner loop are mutually independent and are
executed concurrently. All operations are carried out using modulo
mi operations only. So, Algorithm 2 allows to determine the MRS
representation for a number within a n-moduli RNS in the order of
O(n) time.

Finally, the Algorithm 3 implements a comparison of numbers.

Algorithm 3. RNS Number Comparison

Input: X = 〈x1, x2, . . . , xn〉, Y = 〈y1, y2, . . . , yn〉
Output: X > Y or X < Y or X = Y
Precomputation: Same as those for Algorithm 2.

1: Compute (a1, a2, . . . , an) using Algorithm 2 {for X}
2: Compute (b1, b2, . . . , bn) using Algorithm 2 {for Y }
3: for i = n downto 1 do
4: if ai > bi then
5: return X > Y
6: else if ai < bi then
7: return X < Y
8: end if
9: end for

10: return X = Y

5. EXAMPLE
Let us consider the comparison of X = 251 = 〈6, 8, 9, 4〉 and
Y = 815 = 〈3, 5, 1, 9〉 in RNS with moduli set {7, 9, 11, 13}. For
these moduli M1 = 7,M2 = 63,M3 = 693.

Precomputation stage:

Firstly, let us calculate Tabmi
for moduli 9, 11, 13:

—Tab9 items are calculated according to the following condition:
|a2 · 7|9 = t2, where t2 ∈ {0, 1, 2, . . . , 8}. Tab9 items are
calculated as follows:

if t2 = 0 then a2 = 0 since |0 · 7|9 = 0,
if t2 = 1 then a2 = 4 since |4 · 7|9 = 1,
if t2 = 2 then a2 = 8 since |8 · 7|9 = 2,
if t2 = 3 then a2 = 3 since |3 · 7|9 = 3,
if t2 = 4 then a2 = 7 since |7 · 7|9 = 4,
if t2 = 5 then a2 = 2 since |2 · 7|9 = 5,
if t2 = 6 then a2 = 6 since |6 · 7|9 = 6,
if t2 = 7 then a2 = 1 since |1 · 7|9 = 7,
if t2 = 8 then a2 = 5 since |5 · 7|9 = 8.

Thus, Tab9 = {0, 4, 8, 3, 7, 2, 6, 1, 5}.
—Tab11 items are calculated according to the following condition:
|a3 · 63|11 = t3, where t3 ∈ {0, 1, 2, . . . , 10}. Thus, Tab11 =
{0, 7, 3, 10, 6, 2, 9, 5, 1, 8, 4}.

—Tab13 items are calculated according to the following condition:
|a4 · 693|13 = t4, where t4 ∈ {0, 1, 2, . . . , 12}. Thus, Tab13 =
{0, 10, 7, 4, 1, 11, 8, 5, 2, 12, 9, 6, 3}.

Now let us determine |Mi|mj
for i = 1, 2 and j = i+ 2, . . . , 4:

|M1|11 = 7, |M1|13 = 7, |M2|13 = 11.

Table 1. Performance Evaluation of Different Residue Comparison
Algorithms.

Size of moduli set (n)
Number of required modulo operations
Szabo-
Tanaka

Yassine-
Moore

Algorithm 3

4 28 20 18
8 120 76 46

12 276 164 74
16 496 284 102
20 780 436 130
24 1128 620 158
28 1540 836 186
32 2016 1084 214

Mixed-Radix Conversion and Comparison stages:

MRS representations ofX and Y in accordance with the Algorithm
2 are computed as follows:

For X = 〈6, 8, 9, 4〉: For Y = 〈3, 5, 1, 9〉:

a1 = X1 = x1 = 6 b1 = Y1 = y1 = 3
t2 = |8− 6|9 = 2 t2 = |5− 3|9 = 2

a2 = Tab9(2) = 8 b2 = Tab9(2) = 8
|X2|11 = |8 · 7 + 6|11 = 7 |Y2|11 = |8 · 7 + 3|11 = 4

|X2|13 = |8 · 7 + 6|13 = 10 |Y2|13 = |8 · 7 + 3|13 = 7

t3 = |9− 7|11 = 2 t3 = |1− 4|11 = 8

a3 = Tab11(2) = 3 b3 = Tab11(8) = 1
|X3|13 = |3 · 11 + 10|13 = 4 |Y3|13 = |1 · 11 + 7|13 = 5

t4 = |4− 4|13 = 0 t4 = |9− 5|13 = 4

a4 = Tab13(0) = 0 b4 = Tab13(4) = 1

Thus, (6, 8, 3, 0) is the MRS representation of X and (3, 8, 1, 1) is
the MRS representation of Y . Since a4 < b4, it can be concluded
that X < Y .

6. PERFORMANCE EVALUATION
The main difference between the existing algorithms for comparing
the magnitudes of numbers in RNS and the represented one lies in
the fact that modified parallel Mixed-Radix Conversion technique
for computation of MRS representations (Algorithm 2) is used
in the latter. As mentioned above, classical Szabo-Tanaka MRC
algorithm requires n(n− 1)/2 modulo arithmetic subtractions and
the same number of modulo arithmetic multiplications, which are
being performed strictly sequentially [1]. In 1991, Yassine and
Moore proposed an improved MRC algorithm, which also requires
n(n − 1)/2 subtractions, but only n − 2 multiplications [12].
Algorithm 2 requires only n−2 additions, n−2 multiplications and
n− 1 subtractions, provided that all iterations of inner loop will be
performed simultaneously, divided into n parallel channels. Thus,
both classical Szabo-Tanaka MRC and improved Yassine-Moore
MRC have a time complexity of O(n2), where n is the size of the
moduli set. In contrast, Algorithm 2 has a time complexity ofO(n).

Two MRS representations need to be computed to compare RNS
numbers. Additionally, n operations will be required (in worst case
scenario) for pairwise comparison of all the MRC coefficients. The
total number of operations required for comparing numbers in RNS
by the different algorithms is shown in Table 1. Fig 2 show the
estimated speedup of the algorithm proposed in this paper.
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Fig. 2. Estimated speedup of the proposed algorithm.

It can be seen that if the hardware provides considerable room for
parallelism (computations can be divided into n threads), the new
algorithm is substantially faster than its counterparts.

Classical MRC-II approach (Algorithm 1) also has a time
complexity ofO(n), but requires operating with large integers. The
presented algorithm operates with small mi moduli instead.

In 2009, Gbolagade and Cotofana proposed an MRC-algorithm,
which is closest to Algorithm 2 [14]. It is also characterized
by the linear time complexity in terms of the moduli set size,
and is substantially a parallel implementation of Szabo-Tanaka
MRC. To calculate each MRC coefficient ai, for 3 ≤ i ≤ n,
Gbolagade-Cotofana MRC requires to perform one subtraction
and one multiplication operation. Algorithm 2 requires performing
one subtraction, one multiplication and one addition operation.
The advantages of the Algorithm 2 include the fact that it
does not impose additional restrictions on the RNS moduli set
(Gbolagade-Cotofana MRC requires all moduli to be sorted in
ascending order).

The best known parallel MRC algorithms, based on lookup tables,
have asymptotic complexities in the order of O(n2) in terms of
the required number of tables [15, 16]. In contrast, the proposed
algorithm requires only n − 1 small lookup tables, each of which
has a size of mi log2mi bits.

7. CONCLUSION
This paper proposes a new linear time parallel algorithm for
magnitude comparison in RNS. It is based on a modification
of the MRC-II technique, which allows computing the MRS
representation of RNS number using only modulo mi operations.
In further studies this modification can be used for other
complicated residue operations, such as division or overflow
detection. Other topics for future work include the hardware
and software implementations of the proposed algorithms and
comprehensive experimental analysis of their performance.
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