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ABSTRACT 
This paper analyzes the Hopfield neural network for storage 

and recall of fingerprint images. The paper first discusses the 

storage and recall via hebbian learning rule and then the 

performance enhancement via the pseudo-inverse learning 

rule. Performance is measured with respect to storage 

capacity; recall of distorted or noisy patterns.  Here we test 

the accretive behavior of the Hopfield neural network. 
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1. INTRODUCTION 
Association in human brain refers to the phenomenon of one 

thought causing us to think of another. Correspondingly, 

associative memory is the function where the brain is able to 

store and recall information, given partial knowledge of the 

information content [1]. Associative Memory is a dynamical 

system which has a number of stable states with a domain of 

attraction around them. If the system starts at any state in the 

domain, it will converge to the locally stable state, which is 

called an attractor [2]. One such model, describing the 

organization of neurons in such a way that they function as 

Associative Memory or also called as Content Addressable 

Memory, was proposed by J. J. Hopfield and was named 

after him as Hopfield Model. It is a fully connected neural 

network model in which patterns can be stored by 

distributing among neurons and we can retrieve one of the 

previously presented patterns from an example which is 

similar to, or a noisy version of it [1, 2]. The network 

associates each element of a pattern with a binary neuron. 

The neurons are updated asynchronously and in parallel. 

They are initialized with an input pattern and the network 

activation converges to the closest learnt pattern [18]. This 

dynamical behavior of the neurons strongly depends on the 

synaptic strength between neurons. The specification of the 

synaptic strength is conventionally referred to as learning 

[3]. Learning employs a number of learning algorithms as 

perceptron, hebbian, pseudo inverse, LMS etc. [32].  

The hebbian rule is the simplest rule that can be used to train 

a network. But it suffers from a number of problems such as: 

1. The maximum capacity of this rule is limited to 0.14N, 

where N is the number of neurons in the network [32].  

2. As the number of patterns stored in the network 

increases, the recall efficiency of the network 

decreases. [29, 33].  

3. The network’s ability to correct noisy patterns is also 

extremely limited and deteriorates with packing density 

of the network.  

4. New patterns could hardly be associated to the stored 

patterns.  

 
The rule which can be considered to overcome the 

disadvantages of the hebbian rule is the pseudo inverse 

learning rule. The pseudo inverse rule is better than the 

hebbian rule in terms of the capacity, pattern correction and 

recall efficiency [30, 32]. Section 2 provides a brief 

description of the Hopfield network as associative memory 

and its storage and update dynamics. Section 3 elaborates the 

Pseudo inverse Rule, the associated problems and measures 

to overcome them.  Section 4 contains the experiments 

whose results have been compiled in Section 5. Discussions 

and Conclusions then follow in section 6 and 7 respectively 

2. HOPFIELD NETWORK AS 

ASSOCIATIVE MEMORY 
Hopfield Network is probably the best known example of a 

neural network working as associative memory [24, 32]. It is 

a fully connected network made up of bipolar threshold logic 

units. The units receive input from every other unit except 

for itself. The net input of a unit i at any time t is computed 

by 

𝑆𝑖  𝑡 =   𝑊𝑖𝑗𝑖≠𝑗  𝑆𝑗  𝑡    (1)  

where wij is the weight of the connection between unit i and 

j and sj is the state of unit j, which can be either +1 or -1 [12, 

33]. 

The next state of unit i is a function of its net input and 

current state and is given by 

𝑆𝑖   𝑡 + 1 =  
+1 𝑖𝑓 𝑠𝑖 𝑡 > 𝜃𝑖

−1 𝑖𝑓 𝑠𝑖 𝑡 ≤ 𝜃𝑖

    (2) 

θi is assumed to be 0. 

The network’s weight matrix W is an N × N matrix, whose 

contents are determined by the set of patterns and the 

learning rules used to set the weights. The set of stored 

patterns P={ξ1, ξ2, … ξn) where each pattern ξi is a vector 

of size n. Thus P is a matrix of size l × n, where l is the 

number of patterns stored in the network [32 – 34]. The 

weight matrix in the current paper is a symmetric zero 

diagonal matrix. 

Pattern recall involves setting the initial state of the network 

equal to an input vector ξi. The states of the individual units 

are then updated repeatedly until the overall state of the 

network is stable. Updating of units may be synchronous or 

asynchronous [1, 22]. In the synchronous update all the units 

of the network are updated simultaneously and the state of 

the network is frozen until update is made for all the units. 

While in the asynchronous update, a unit is selected at 

random and its state is updated using the current state of the 

network. This update via random choice of a unit is 

continued until no further change in the state takes place for 

all the units i.e. the network reaches a stable state. Each 

stable state of the network corresponds to a stored pattern 
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that has a minimum hamming distance from the input pattern 

[11]. With each stable state of the network is associated an 

energy E and hence that state acts as a point attractor. And 

during update the network moves from an initial high energy 

state to the nearest attractor. All stable states which are 

similar to any of ξi of P are called Fundamental Memories. 

Apart from them there are other stable states, including 

inverses of fundamental memories. The number of such 

fundamental memories and the nature of additional stable 

states depends upon the learning algorithm that is employed. 

3. PSEUDO INVERSE RULE 
The pseudo inverse weight matrix is given by 

𝑊 = ΞΞ−1    (3) 

where Ξ is the matrix whose rows are ξn and Ξ -1 is its 

pseudo inverse. The matrix with the property that Ξ -1 Ξ = I 

[29, 32, 33]. 

In contrast to the hebbian rule  pseudo inverse rule is neither 

local nor incremental. This means that to update a particular 

connection, it does not depend on the information available 

on either side of the connection and also patterns cannot be 

incrementally added to the network. These problems can be 

solved by modifying the rule in such a way that some 

characteristics of hebbian learning are also incorporated such 

that locality and incrementally is ensured. The hebbian rule 

is given as: 

                 L 

𝑊𝑖𝑗   =
1

𝑁
 𝜉𝑙𝑖 ∗  𝜉𝑙𝑗𝑙=1    𝑓𝑜𝑟 𝑖 ≠ 𝑗                (4) 

        = 0,   𝑓𝑜𝑟 𝑖 = 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑁 

where, N is the number of units/neurons in the network ξl for 

l = 1 to L are the vectors / images to be stored, where each 

component of ξl is binary i.e. each ξli = ±1 for i=1 to N. 

 

Now  the  pseudo  inverse  of  the  weight  matrix  can  be 

calculated as 

𝑊𝑝𝑖𝑛𝑣 = Wt ∗ 𝑊 ∗ 𝑊𝑡 −1                             (5) 

Where Wt is the transpose of the weight matrix W 

(W * Wt)-1 is the inverse of the product of W and its 

transpose. 

This method will overcome the locality and incrementally 

problems associated with the pseudo inverse rule. In addition 

it has the benefits of the pseudo inverse rule in terms of the 

storage capacity and recall efficiency over the hebbian rule. 

4. SIMULATION DESIGN AND 

IMPLEMENTATION  DETAILS 
Various experiments were conducted to test the efficiency of 

the pseudo inverse rule for the points mentioned in Section 

1. All experiments were conducted in MatLab. Before 

implementing the learning rule the initial task was 

conversion of raw fingerprint images into patterns for 

storage in the network. For this the images were 

preprocessed through a series of steps, briefly discussed in 

the following subsection. 

4.1.Image Preprocessing 
Preprocessing, in the form of image enhancement, of the 

fingerprint images is required to convert the images into 

suitable patterns for storage in the Hopfield Network. The 

term image enhancement refers to making the image clearer 

for easy further operations. The fingerprint images 

considered for the study are the images of the fingerprint 

impressions of different individuals. The images are not of 

perfect quality to be considered for storage in a network. 

Hence enhancement methods are required to reveal the fine 

details of the images which may remain uncovered due to 

insufficient ink or imperfect impressions. The enhancement 

methods would increase the contrast between image 

components and connect the broken or incomplete image 

components. 

The images were first scanned as RGB images and then 

converted to Grayscale to retain the fine details in the 

images. Then the image was enhanced and made clearer and 

sharper using histogram equalization techniques. Note that 

histogram equalization refers to expansion of the pixel value 

distribution of an image so as to increase the perceptional 

information. The image was then subjected to binarization. 

Binarization refers to conversion of a grayscale image to 

black and white image. Typically binarization converts an 

image of upto 256 gray levels to a black and white image. 

 
 
 
 
 

(a)               (b)             (c)        (d)  
 

Fig 1: (a) Initial RGB Image, (b) Grayscale Image, 

(c)Histogram equalized Image, (d) Binarized Image 

After attaining binarization, the need was to convert the 

binary image to bipolar image, since Hopfield networks 

work best with bipolar data. A bipolar image is one where 

each pixel has value either +1 or -1. Hence, all pixel values 

are verified and those with value 0 are converted to -1, thus 

converting the image to bipolar. Finally the image is 

converted to bipolar vectors. All the image vectors are stored 

into a comprehensive matrix which has the following 

structure. 

     ξ11, ξ12, ………., ξ1N 
P =       ξ21, ξ22, ………., ξ2N 
      ……………………. 
             ξ11, ξ12, ………., ξ1N 
 
 

4.2.Pattern Storage 
The patterns in the form of bipolar vectors created in section 

4.1 were then stored in the Hopfield network via the 

following algorithm separately for hebbian and pseudo 

inverse rules in separate weight matrices. 
 
Algorithm: Pattern Storage 
1. Begin with a zero weight matrix, W of size N × N.  

2. Compute the weight matrix as per equation 4 for 
the l patterns, where each pattern is a vector of 
size n.  

3. Assign zeros to the diagonal elements at the end of 
the each iteration.  

4. Finally calculate the pseudo inverse of W as per 
equation 5.  
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Hence the L patterns are all stored in the Hopfield network. 

The final weight matrix is a symmetric zero diagonal matrix. 

Once the patterns were stored the next experiments were to 

test the capacity and recall efficiency of the network. This is 

discussed in the next subsection. 

4.3.Pattern Recall 
4.3.1. Mathematical Implementation 
Pattern recall refers to the identification and retrieval of the 
corresponding image when an image is presented as input to 
the network. As soon as an image is fed as input to the 
network, the network starts updating itself. In the current 
paper, we use asynchronous update of the network units to 
find their new states. This update via random choice of a unit 
is continued until no further change in the state takes place 
for all the units. That is, the state at time (t+1) is the same as 
the state at time t for all the units. 

𝑠𝑖 𝑡 + 1 = 𝑠𝑖 𝑡  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖           (6) 

Such a state is referred to as the stable state. In a stable state 

the output of the network will be a stable (trained) pattern 

that has a minimum hamming distance from the input pattern 

[11]. The network is said to have converged and recalled the 

pattern if the output matches the pattern presented initially as 

input. For pattern association, the patterns stored in an 

associative memory act as attractors and the largest 

hamming distance within which almost all states flow to the 

pattern is defined as the radius of the basin of attraction [5]. 

Each state of the Hopfield Network is associated with an 

energy value, whose value either reduces or remains the 

same as the state of the network changes [22]. The energy 

function of the network is given by 

𝑉 = −
1

2
  𝑤𝑖𝑗 𝑠𝑖𝑠𝑗 + 𝜃𝑖𝑠𝑖𝑗𝑖            (7) 

Hopfield has shown that for symmetric weights with no self 

feedback connections and bipolar output functions, the 

dynamics of the network using asynchronous update always 

lead towards energy minima at equilibrium. The network 

states corresponding to these energy minima are termed as 

stable states [22] and the network uses each of these stable 

states for storing individual patterns. 

The Hopfield network has the ability to recognize unclear 

pictures correctly. This means that the network can recall 

actual pattern when the noisy or partial clues of that pattern 

are presented to the network. It is known and has been 

shown [1, 2] that Hopfield networks converge to the original 

patterns if up to 40% distorted version of a stored pattern is 

presented. The patterns are stored in the network in the form 

of attractors on the energy surface. The network can then be 

presented with either a portion of one of the images (partial 

cue) or an image degraded with noise (noisy cue) and 

through multiple iterations it will attempt to reconstruct one 

of the stored images. 

4.3.2. Algorithmic Implementation 
The algorithm for pattern recall in a Hopfield Neural 

Network storing L patterns is as follows: 

The algorithm would be implemented both for Hebbian and 

Pseudo inverse rules and results would be recorded. Assume 

a pattern x, of size N, already stored in the network and 

modified by altering the values of k randomly chosen pixels. 

Also, assume vectors ynew to store the new states of the 

network. Consider a variable count initialized to value 1. 

 

1) Initialize weights to store patterns (Use  Hebbian and 

Pseudo inverse Rule) as per  algorithm for Pattern 

Storage. While activations of the net are converged 

perform  steps 2 to 8.  

2) For each input vector x, repeat steps 3 to 7.  

3) Set initial activations of the net equal to the    external 

input vector x, yi = xi (i=1 to n).  

4) Perform steps 5 to 7 for each unit yi.  

5) Compute the net input 𝑌𝑛𝑒𝑤 = 𝑥𝑖 +  𝑦𝑖𝑖𝑗 ∗ 𝑤𝑗𝑖   

6) Determine the activation (output signal)  

𝑦𝑖 =  
+1   𝑖𝑓 𝑦𝑛𝑒𝑤 > 0
−1  𝑖𝑓 𝑦𝑛𝑒𝑤 ≤ 0

  

7) Broadcast the value of ynew to all other units.  

8) Test for convergence as per equation 4.  

Note: The value of threshold θ is assumed to be zero. Each 

unit is randomly chosen for update. 
 
The maximum number of patterns successfully recalled by 

the above procedure is a pointer to the maximum storage 

capacity of the Hopfield Network, which is further discussed 

in the results. Further the recall efficiency for noisy patterns 

is also determined as up to what percentage of error in the 

patterns is acceptable by the network and convergence to the 

original pattern occurs. This is discussed in the results. 

5. RESULTS 
1) Experiment 1 (Pattern Recall ability and Critical 

Storage Capacity of the Hopfield Network). Table 1 

shows the maximum number of patterns that can be 

efficiently stored in the Hopfield network with hebb 

and pseudo inverse rule.  

2) Experiment 2 (Recall Efficiency of the Hopfield 

Network for Noisy Patterns and New Patterns). Table 2 

compares for hebb and pseudo inverse rule, the 

successful and unsuccessful recall results at 30%, 40%, 

50% and 60% distortion respectively at various packing 

densities of the network. The tables also shows the 

results that when new patterns were presented to the 

network, whether they were associated to some stored 

pattern that matched it most closely or not.  

6. DISCUSSIONS  

6.1.Pattern Storage 
All the patterns after preprocessing as depicted in Section 

4.1 were converted into bipolar vectors ready for storage into 

the Network. As per the algorithm of 4.2, the patterns were 

input one by one into the Hopfield Network first by hebbian 

rule and then by pseudo inverse rule. The weight matrices 

for both are 900 × 900 zero diagonal, symmetric matrix. 

6.2.Pattern Recall and Critical Storage 

Capacity 
The storage capacity of a neural network refers to the 

maximum number of patterns that can be stored and 

successfully recalled for a given number of nodes, N. The 

Hopfield network is limited in storage capacity to 0.14N 

when trained with hebbian rule [1-5, 11-12, 18, 21]. But the 

capacity enhances to N with pseudo inverse rule. 

Experiments were conducted to check the same and the 

network was able to store and perfectly recall 0.14N i.e. 126 

patterns with hebbian rule and N i.e. 900 patterns with 
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pseudo inverse rule. 

Thus the critical storage capacity for the Hopfield Network 

comes out to be 0.14N with hebbian and N with pseudo 

inverse rule without any error in pattern recall, for the 

current study. 

Table 1: Critical Storage Capacity 

 Hebbian Pseudo inverse 

Capacity 126 900 

 
6.3.Recall of Noisy Patterns 
The Hopfield network has the ability to recognize unclear 

pictures correctly. This capacity of the Network was tested 

as per algorithm in Section IV part C. This time the 

experiments were conducted with the Network storing 20, 

50, 80, 100, 130 patterns successively. The patterns were 

modified by altering 30%, 40%, 50% and 60% bits. The bits 

were randomly selected for alteration and the results 

compiled. Table 2 displays the results for both rules at 

various packing densities of the network and various levels 

of distortions. Further the network’s behavior is also tested 

for new patterns and the observations are recorded in the 

same table. 

Table 2: Pattern Recall Ability With Noisy And New 

Patterns 

No. of  Pattern 
Associated to 

  

Patterns 

   

     

in the      

Network %distortion Hebbian  
Pseudo 
inverse  

20 

patterns 

30% Original Pattern  
Original 
Pattern  

40% Original Pattern  
Original 
Pattern  

        50% Nearest neighbor  
Nearest 
neighbor  

     

60% None 

 

None 

 

  

New   Nearest  

Patterns None  neighbor  

 30% Original Pattern  

Original 

Pattern  

 40% Original Pattern  

Original 

Pattern  

50 

   Nearest  

50% None 

 

neighbor 

 

patterns 

  

60% None 

 

None 

 

   

 New   Nearest  

 Patterns None  neighbor  

  Original for 50%    

 30% patterns  
Original 
Pattern  

80 

40% None  

Original 

Pattern  

50% None 

 

None 

 

patterns   

60% None 

 

None 

 

   

 New     

 Patterns None  None  

  Original for 30%    

 30% patterns  

Original 

Pattern  

100 

40% None  

Original 

Pattern  

50% None 

 

None 

 

patterns 

  

60% None 

 

None 

 

   

 New     

 Patterns None  None  

  Original for 10%    

 30% patterns  
Original 
Pattern  

130 

40% None  None  

50% None 

 

None 

 

patterns   

 60% None  None  

 New     

 Patterns None  None  
 
Observations 

1) With 20 patterns, behavior with distorted patterns is 

similar with both the rules i.e. up to 40% distortion the 

same pattern is associated but at 50% distortion some 

other stored pattern or the nearest neighbor is 

associated. New patterns are not recognized by the 

hebbian rule but by pseudo inverse they are associated 

to some stored pattern.  

 
2) With 50 patterns, behavior up to 40% distorted patterns 

is similar with both the rules. But at 50% distortion 

hebb rule a stop recognizing the pattern while 

pseudoinverse associates it to its nearest neighbor. New 

patterns are not recognized by the hebbian rule but by 

pseudo inverse they are associated to some stored 

pattern.  

3) With 80 patterns hebb rule further deteriorates and even 

at 30% distortion recognizes only 50% patterns. The 

pseudo inverse rule on the other hand recognizes the 

patterns up to 40% distortion also but now it stops 

associating new patterns to stored patterns.  

4) With 100 patterns, hebb rule further deteriorates and 

recognizes only 30% patterns at 30% distortion. While 

pseudo inverse has the same behavior as that with 80 

patterns.  

5) With 130 patterns, hebb rule recognizes hardly 10% 

patterns at 30% distortion. While pseudo inverse rule, 

though having degraded in performance at this stage yet 

is able to recognize the original pattern up to 30% 

distortion. Beyond this there is no recognition.  
 
It was observed that the network performs sufficiently well 

with pseudo inverse rule than with hebbian rule with regard 

to distorted patterns and with new patterns which are not at 

all recognized bt the network in case of hebbian rule.  

Further it has been observed that the network’s efficiency 
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starts deteriorating as the network gets saturated. As 

depicted in table 2, the performance of the network 

deteriorated with 80 patterns for hebb rule and 130 patterns 

for pseudo inverse rule. This result can be attributed to the 

reduction of the Hamming Distance between the stored 

patterns and the consequent reduction of the radius of the 

basin of attraction of each stable state. Hence only few 

patterns could settle into the stable states of their original 

patterns.  

7. CONCLUSIONS  
The Hopfield network designed to work with image patterns 

works variably with the learning rules utilized to train the 

network. The efficiency is invariably low when we work 

with the hebbian rule in terms of the maximum capacity and 

the recall efficiency with noisy and new patterns. But this 

capability can be sufficiently enhanced when the pseudo 

inverse rule with capabilities of hebbian rule is used to train 

the network. With this the capacity suddenly increases to N 

and the recall efficiency is also remarkably improved for 

distorted patterns. New patterns are now recognized by the 

network upto a limited packing density which was totally 

absent with hebb rule. 
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