
International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.5, May 2016

44

Implementation of Hopfield Neural Network for its

Capacity with Finger Print Images

Ramesh Chandra Sahoo
NIET,Gr. Noida (UP)

Somesh Kumar
NIET,Gr. Noida (UP)

Puneet Goswami
NIET,Gr. Noida (UP)

ABSTRACT
This paper analyzes the Hopfield neural network for storage

and recall of fingerprint images. The paper first discusses the

storage and recall via hebbian learning rule and then the

performance enhancement via the pseudo-inverse learning

rule. Performance is measured with respect to storage

capacity; recall of distorted or noisy patterns. Here we test

the accretive behavior of the Hopfield neural network.

Keywords
Hopfield Neural Networks, Associative memory,Pattern

storage and recall, Finger print images.

1. INTRODUCTION
Association in human brain refers to the phenomenon of one

thought causing us to think of another. Correspondingly,

associative memory is the function where the brain is able to

store and recall information, given partial knowledge of the

information content [1]. Associative Memory is a dynamical

system which has a number of stable states with a domain of

attraction around them. If the system starts at any state in the

domain, it will converge to the locally stable state, which is

called an attractor [2]. One such model, describing the

organization of neurons in such a way that they function as

Associative Memory or also called as Content Addressable

Memory, was proposed by J. J. Hopfield and was named

after him as Hopfield Model. It is a fully connected neural

network model in which patterns can be stored by

distributing among neurons and we can retrieve one of the

previously presented patterns from an example which is

similar to, or a noisy version of it [1, 2]. The network

associates each element of a pattern with a binary neuron.

The neurons are updated asynchronously and in parallel.

They are initialized with an input pattern and the network

activation converges to the closest learnt pattern [18]. This

dynamical behavior of the neurons strongly depends on the

synaptic strength between neurons. The specification of the

synaptic strength is conventionally referred to as learning

[3]. Learning employs a number of learning algorithms as

perceptron, hebbian, pseudo inverse, LMS etc. [32].

The hebbian rule is the simplest rule that can be used to train

a network. But it suffers from a number of problems such as:

1. The maximum capacity of this rule is limited to 0.14N,

where N is the number of neurons in the network [32].

2. As the number of patterns stored in the network

increases, the recall efficiency of the network

decreases. [29, 33].

3. The network’s ability to correct noisy patterns is also

extremely limited and deteriorates with packing density

of the network.

4. New patterns could hardly be associated to the stored

patterns.

The rule which can be considered to overcome the

disadvantages of the hebbian rule is the pseudo inverse

learning rule. The pseudo inverse rule is better than the

hebbian rule in terms of the capacity, pattern correction and

recall efficiency [30, 32]. Section 2 provides a brief

description of the Hopfield network as associative memory

and its storage and update dynamics. Section 3 elaborates the

Pseudo inverse Rule, the associated problems and measures

to overcome them. Section 4 contains the experiments

whose results have been compiled in Section 5. Discussions

and Conclusions then follow in section 6 and 7 respectively

2. HOPFIELD NETWORK AS

ASSOCIATIVE MEMORY
Hopfield Network is probably the best known example of a

neural network working as associative memory [24, 32]. It is

a fully connected network made up of bipolar threshold logic

units. The units receive input from every other unit except

for itself. The net input of a unit i at any time t is computed

by

𝑆𝑖 𝑡 = 𝑊𝑖𝑗𝑖≠𝑗 𝑆𝑗 𝑡 (1)

where wij is the weight of the connection between unit i and

j and sj is the state of unit j, which can be either +1 or -1 [12,

33].

The next state of unit i is a function of its net input and

current state and is given by

𝑆𝑖 𝑡 + 1 =
+1 𝑖𝑓 𝑠𝑖 𝑡 > 𝜃𝑖

−1 𝑖𝑓 𝑠𝑖 𝑡 ≤ 𝜃𝑖

 (2)

θi is assumed to be 0.

The network’s weight matrix W is an N × N matrix, whose

contents are determined by the set of patterns and the

learning rules used to set the weights. The set of stored

patterns P={ξ1, ξ2, … ξn) where each pattern ξi is a vector

of size n. Thus P is a matrix of size l × n, where l is the

number of patterns stored in the network [32 – 34]. The

weight matrix in the current paper is a symmetric zero

diagonal matrix.

Pattern recall involves setting the initial state of the network

equal to an input vector ξi. The states of the individual units

are then updated repeatedly until the overall state of the

network is stable. Updating of units may be synchronous or

asynchronous [1, 22]. In the synchronous update all the units

of the network are updated simultaneously and the state of

the network is frozen until update is made for all the units.

While in the asynchronous update, a unit is selected at

random and its state is updated using the current state of the

network. This update via random choice of a unit is

continued until no further change in the state takes place for

all the units i.e. the network reaches a stable state. Each

stable state of the network corresponds to a stored pattern

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.5, May 2016

45

that has a minimum hamming distance from the input pattern

[11]. With each stable state of the network is associated an

energy E and hence that state acts as a point attractor. And

during update the network moves from an initial high energy

state to the nearest attractor. All stable states which are

similar to any of ξi of P are called Fundamental Memories.

Apart from them there are other stable states, including

inverses of fundamental memories. The number of such

fundamental memories and the nature of additional stable

states depends upon the learning algorithm that is employed.

3. PSEUDO INVERSE RULE
The pseudo inverse weight matrix is given by

𝑊 = ΞΞ−1 (3)

where Ξ is the matrix whose rows are ξn and Ξ -1 is its

pseudo inverse. The matrix with the property that Ξ -1 Ξ = I

[29, 32, 33].

In contrast to the hebbian rule pseudo inverse rule is neither

local nor incremental. This means that to update a particular

connection, it does not depend on the information available

on either side of the connection and also patterns cannot be

incrementally added to the network. These problems can be

solved by modifying the rule in such a way that some

characteristics of hebbian learning are also incorporated such

that locality and incrementally is ensured. The hebbian rule

is given as:

 L

𝑊𝑖𝑗 =
1

𝑁
 𝜉𝑙𝑖 ∗ 𝜉𝑙𝑗𝑙=1 𝑓𝑜𝑟 𝑖 ≠ 𝑗 (4)

 = 0, 𝑓𝑜𝑟 𝑖 = 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑁

where, N is the number of units/neurons in the network ξl for

l = 1 to L are the vectors / images to be stored, where each

component of ξl is binary i.e. each ξli = ±1 for i=1 to N.

Now the pseudo inverse of the weight matrix can be

calculated as

𝑊𝑝𝑖𝑛𝑣 = Wt ∗ 𝑊 ∗ 𝑊𝑡 −1 (5)

Where Wt is the transpose of the weight matrix W

(W * Wt)-1 is the inverse of the product of W and its

transpose.

This method will overcome the locality and incrementally

problems associated with the pseudo inverse rule. In addition

it has the benefits of the pseudo inverse rule in terms of the

storage capacity and recall efficiency over the hebbian rule.

4. SIMULATION DESIGN AND

IMPLEMENTATION DETAILS
Various experiments were conducted to test the efficiency of

the pseudo inverse rule for the points mentioned in Section

1. All experiments were conducted in MatLab. Before

implementing the learning rule the initial task was

conversion of raw fingerprint images into patterns for

storage in the network. For this the images were

preprocessed through a series of steps, briefly discussed in

the following subsection.

4.1.Image Preprocessing
Preprocessing, in the form of image enhancement, of the

fingerprint images is required to convert the images into

suitable patterns for storage in the Hopfield Network. The

term image enhancement refers to making the image clearer

for easy further operations. The fingerprint images

considered for the study are the images of the fingerprint

impressions of different individuals. The images are not of

perfect quality to be considered for storage in a network.

Hence enhancement methods are required to reveal the fine

details of the images which may remain uncovered due to

insufficient ink or imperfect impressions. The enhancement

methods would increase the contrast between image

components and connect the broken or incomplete image

components.

The images were first scanned as RGB images and then

converted to Grayscale to retain the fine details in the

images. Then the image was enhanced and made clearer and

sharper using histogram equalization techniques. Note that

histogram equalization refers to expansion of the pixel value

distribution of an image so as to increase the perceptional

information. The image was then subjected to binarization.

Binarization refers to conversion of a grayscale image to

black and white image. Typically binarization converts an

image of upto 256 gray levels to a black and white image.

(a) (b) (c) (d)

Fig 1: (a) Initial RGB Image, (b) Grayscale Image,

(c)Histogram equalized Image, (d) Binarized Image

After attaining binarization, the need was to convert the

binary image to bipolar image, since Hopfield networks

work best with bipolar data. A bipolar image is one where

each pixel has value either +1 or -1. Hence, all pixel values

are verified and those with value 0 are converted to -1, thus

converting the image to bipolar. Finally the image is

converted to bipolar vectors. All the image vectors are stored

into a comprehensive matrix which has the following

structure.

 ξ11, ξ12, ………., ξ1N
P = ξ21, ξ22, ………., ξ2N
 …………………….
 ξ11, ξ12, ………., ξ1N

4.2.Pattern Storage
The patterns in the form of bipolar vectors created in section

4.1 were then stored in the Hopfield network via the

following algorithm separately for hebbian and pseudo

inverse rules in separate weight matrices.

Algorithm: Pattern Storage
1. Begin with a zero weight matrix, W of size N × N.

2. Compute the weight matrix as per equation 4 for
the l patterns, where each pattern is a vector of
size n.

3. Assign zeros to the diagonal elements at the end of
the each iteration.

4. Finally calculate the pseudo inverse of W as per
equation 5.

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.5, May 2016

46

Hence the L patterns are all stored in the Hopfield network.

The final weight matrix is a symmetric zero diagonal matrix.

Once the patterns were stored the next experiments were to

test the capacity and recall efficiency of the network. This is

discussed in the next subsection.

4.3.Pattern Recall
4.3.1. Mathematical Implementation
Pattern recall refers to the identification and retrieval of the
corresponding image when an image is presented as input to
the network. As soon as an image is fed as input to the
network, the network starts updating itself. In the current
paper, we use asynchronous update of the network units to
find their new states. This update via random choice of a unit
is continued until no further change in the state takes place
for all the units. That is, the state at time (t+1) is the same as
the state at time t for all the units.

𝑠𝑖 𝑡 + 1 = 𝑠𝑖 𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 (6)

Such a state is referred to as the stable state. In a stable state

the output of the network will be a stable (trained) pattern

that has a minimum hamming distance from the input pattern

[11]. The network is said to have converged and recalled the

pattern if the output matches the pattern presented initially as

input. For pattern association, the patterns stored in an

associative memory act as attractors and the largest

hamming distance within which almost all states flow to the

pattern is defined as the radius of the basin of attraction [5].

Each state of the Hopfield Network is associated with an

energy value, whose value either reduces or remains the

same as the state of the network changes [22]. The energy

function of the network is given by

𝑉 = −
1

2
 𝑤𝑖𝑗 𝑠𝑖𝑠𝑗 + 𝜃𝑖𝑠𝑖𝑗𝑖 (7)

Hopfield has shown that for symmetric weights with no self

feedback connections and bipolar output functions, the

dynamics of the network using asynchronous update always

lead towards energy minima at equilibrium. The network

states corresponding to these energy minima are termed as

stable states [22] and the network uses each of these stable

states for storing individual patterns.

The Hopfield network has the ability to recognize unclear

pictures correctly. This means that the network can recall

actual pattern when the noisy or partial clues of that pattern

are presented to the network. It is known and has been

shown [1, 2] that Hopfield networks converge to the original

patterns if up to 40% distorted version of a stored pattern is

presented. The patterns are stored in the network in the form

of attractors on the energy surface. The network can then be

presented with either a portion of one of the images (partial

cue) or an image degraded with noise (noisy cue) and

through multiple iterations it will attempt to reconstruct one

of the stored images.

4.3.2. Algorithmic Implementation
The algorithm for pattern recall in a Hopfield Neural

Network storing L patterns is as follows:

The algorithm would be implemented both for Hebbian and

Pseudo inverse rules and results would be recorded. Assume

a pattern x, of size N, already stored in the network and

modified by altering the values of k randomly chosen pixels.

Also, assume vectors ynew to store the new states of the

network. Consider a variable count initialized to value 1.

1) Initialize weights to store patterns (Use Hebbian and

Pseudo inverse Rule) as per algorithm for Pattern

Storage. While activations of the net are converged

perform steps 2 to 8.

2) For each input vector x, repeat steps 3 to 7.

3) Set initial activations of the net equal to the external

input vector x, yi = xi (i=1 to n).

4) Perform steps 5 to 7 for each unit yi.

5) Compute the net input 𝑌𝑛𝑒𝑤 = 𝑥𝑖 + 𝑦𝑖𝑖𝑗 ∗ 𝑤𝑗𝑖

6) Determine the activation (output signal)

𝑦𝑖 =
+1 𝑖𝑓 𝑦𝑛𝑒𝑤 > 0
−1 𝑖𝑓 𝑦𝑛𝑒𝑤 ≤ 0

7) Broadcast the value of ynew to all other units.

8) Test for convergence as per equation 4.

Note: The value of threshold θ is assumed to be zero. Each

unit is randomly chosen for update.

The maximum number of patterns successfully recalled by

the above procedure is a pointer to the maximum storage

capacity of the Hopfield Network, which is further discussed

in the results. Further the recall efficiency for noisy patterns

is also determined as up to what percentage of error in the

patterns is acceptable by the network and convergence to the

original pattern occurs. This is discussed in the results.

5. RESULTS
1) Experiment 1 (Pattern Recall ability and Critical

Storage Capacity of the Hopfield Network). Table 1

shows the maximum number of patterns that can be

efficiently stored in the Hopfield network with hebb

and pseudo inverse rule.

2) Experiment 2 (Recall Efficiency of the Hopfield

Network for Noisy Patterns and New Patterns). Table 2

compares for hebb and pseudo inverse rule, the

successful and unsuccessful recall results at 30%, 40%,

50% and 60% distortion respectively at various packing

densities of the network. The tables also shows the

results that when new patterns were presented to the

network, whether they were associated to some stored

pattern that matched it most closely or not.

6. DISCUSSIONS

6.1.Pattern Storage
All the patterns after preprocessing as depicted in Section

4.1 were converted into bipolar vectors ready for storage into

the Network. As per the algorithm of 4.2, the patterns were

input one by one into the Hopfield Network first by hebbian

rule and then by pseudo inverse rule. The weight matrices

for both are 900 × 900 zero diagonal, symmetric matrix.

6.2.Pattern Recall and Critical Storage

Capacity
The storage capacity of a neural network refers to the

maximum number of patterns that can be stored and

successfully recalled for a given number of nodes, N. The

Hopfield network is limited in storage capacity to 0.14N

when trained with hebbian rule [1-5, 11-12, 18, 21]. But the

capacity enhances to N with pseudo inverse rule.

Experiments were conducted to check the same and the

network was able to store and perfectly recall 0.14N i.e. 126

patterns with hebbian rule and N i.e. 900 patterns with

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.5, May 2016

47

pseudo inverse rule.

Thus the critical storage capacity for the Hopfield Network

comes out to be 0.14N with hebbian and N with pseudo

inverse rule without any error in pattern recall, for the

current study.

Table 1: Critical Storage Capacity

 Hebbian Pseudo inverse

Capacity 126 900

6.3.Recall of Noisy Patterns
The Hopfield network has the ability to recognize unclear

pictures correctly. This capacity of the Network was tested

as per algorithm in Section IV part C. This time the

experiments were conducted with the Network storing 20,

50, 80, 100, 130 patterns successively. The patterns were

modified by altering 30%, 40%, 50% and 60% bits. The bits

were randomly selected for alteration and the results

compiled. Table 2 displays the results for both rules at

various packing densities of the network and various levels

of distortions. Further the network’s behavior is also tested

for new patterns and the observations are recorded in the

same table.

Table 2: Pattern Recall Ability With Noisy And New

Patterns

No. of Pattern
Associated to

Patterns

in the

Network %distortion Hebbian
Pseudo
inverse

20

patterns

30% Original Pattern
Original
Pattern

40% Original Pattern
Original
Pattern

 50% Nearest neighbor
Nearest
neighbor

60% None

None

New Nearest

Patterns None neighbor

 30% Original Pattern

Original

Pattern

 40% Original Pattern

Original

Pattern

50

 Nearest

50% None

neighbor

patterns

60% None

None

 New Nearest

 Patterns None neighbor

 Original for 50%

 30% patterns
Original
Pattern

80

40% None

Original

Pattern

50% None

None

patterns

60% None

None

 New

 Patterns None None

 Original for 30%

 30% patterns

Original

Pattern

100

40% None

Original

Pattern

50% None

None

patterns

60% None

None

 New

 Patterns None None

 Original for 10%

 30% patterns
Original
Pattern

130

40% None None

50% None

None

patterns

 60% None None

 New

 Patterns None None

Observations

1) With 20 patterns, behavior with distorted patterns is

similar with both the rules i.e. up to 40% distortion the

same pattern is associated but at 50% distortion some

other stored pattern or the nearest neighbor is

associated. New patterns are not recognized by the

hebbian rule but by pseudo inverse they are associated

to some stored pattern.

2) With 50 patterns, behavior up to 40% distorted patterns

is similar with both the rules. But at 50% distortion

hebb rule a stop recognizing the pattern while

pseudoinverse associates it to its nearest neighbor. New

patterns are not recognized by the hebbian rule but by

pseudo inverse they are associated to some stored

pattern.

3) With 80 patterns hebb rule further deteriorates and even

at 30% distortion recognizes only 50% patterns. The

pseudo inverse rule on the other hand recognizes the

patterns up to 40% distortion also but now it stops

associating new patterns to stored patterns.

4) With 100 patterns, hebb rule further deteriorates and

recognizes only 30% patterns at 30% distortion. While

pseudo inverse has the same behavior as that with 80

patterns.

5) With 130 patterns, hebb rule recognizes hardly 10%

patterns at 30% distortion. While pseudo inverse rule,

though having degraded in performance at this stage yet

is able to recognize the original pattern up to 30%

distortion. Beyond this there is no recognition.

It was observed that the network performs sufficiently well

with pseudo inverse rule than with hebbian rule with regard

to distorted patterns and with new patterns which are not at

all recognized bt the network in case of hebbian rule.

Further it has been observed that the network’s efficiency

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.5, May 2016

48

starts deteriorating as the network gets saturated. As

depicted in table 2, the performance of the network

deteriorated with 80 patterns for hebb rule and 130 patterns

for pseudo inverse rule. This result can be attributed to the

reduction of the Hamming Distance between the stored

patterns and the consequent reduction of the radius of the

basin of attraction of each stable state. Hence only few

patterns could settle into the stable states of their original

patterns.

7. CONCLUSIONS
The Hopfield network designed to work with image patterns

works variably with the learning rules utilized to train the

network. The efficiency is invariably low when we work

with the hebbian rule in terms of the maximum capacity and

the recall efficiency with noisy and new patterns. But this

capability can be sufficiently enhanced when the pseudo

inverse rule with capabilities of hebbian rule is used to train

the network. With this the capacity suddenly increases to N

and the recall efficiency is also remarkably improved for

distorted patterns. New patterns are now recognized by the

network upto a limited packing density which was totally

absent with hebb rule.

8. REFERENCES
[1] Kevin Takasaki, “Critical Capacity of Hopfield

Networks”, MIT Department of Physics, 2007.

[2] Ramasamy Ramachandran, Natarajan Gunusekharan,

“Optimal Implementation of two Dimensional Bipolar

Hopfield Model Neural Network”, Proc. Natl. Sci.

Counc. ROC(A), 2000, Vol. 24(1), pp 73 – 78.

[3] Gang Wei, Zheyuan Yu, “Storage Capacity of Letter

Recognition in Hopfield Networks”, Faculty of

Computer Science, Dalhousie University,

http://citeseer.ist.psu.edu/584397.html

[4] J.Ma, “The Object Perceptron Learning Algorithm on

Generalised Hopfield Networks for Associative

Memory”, Neural Computing and Applications, 1999,

Vol. 8, 25 – 32.

[5] N. Davey, S.P Hunt, “The Capacity and Attractor

Basins of Associative Memory Models”.

[6] Sylvain Chartier, Richard Lepage, “Learning and

Extracting Edges from Images by a Modified Hopfield

Neural Network”, 2002.

[7] Mahmoud I. A. Abdulla, Hanaa Shaker, “Fingerprint

Matching Techniques using Wavelet Analysis”.

[8] Marjory Abreu, Michael Fairhurst, “An Empirical

Comparison of Individual Machine Learning

Techniques in Signature and Fingerprint

Classification”.

[9] Atsushi Sugiura, Yoshiyuki Koseki, “A User Interface

Using Fingerprint Recognition – Holding Commands

and Data

Objects on Fingers”, UIST ’98, 1998, ACM, 0-58113-

0341/98/11.

[10] Sung Bum Pan, Youn Hee Gil, Daesung Moon,

Yongwha Chung, Chee Hang Park, “A Memory

Efficient Fingerprint Verification Algorithm Using a

Multi-Resolution Accumulator Array”, ETRI Journal,

2003, Vol. 25(3).

[11] E. Vonk, L.P.J Veelenturf, L.C. Jain, “Neural

Networks: Implementations and Applications”, IEEE

AES Magazine, 1996.

[12] Stainslaw Jankowski, Andrzej Lozowski, Jacek M.

Zurada, “Complex Valued Multistate Neural

Associative Memory, IEEE Transactions on Neural

Networks, 1996, 7(4), 1491 – 1496.

[13] Yingquan Wu, Dimitris A. Pados, “A Feedforward

Bidirectional Associative Memory”, IEEE Transactions

on Neural Networks, 2000, Vol. 100(40), 859 – 866.

[14] Ju Cheng Yang, Sook Yoon, Dong Sun Park,

“Applying Learning Vector Quantization Neural

Network for Fingerprint Matching”, AI, 2006, LNAI

4304, 500 – 509.

[15] Ali Okatan, Cagatay Akpolat, Servet Senyucel, “Cosine

Transform Method for Fingerprint Recognition”.

[16] Haijun Zhou, Reinhard Lipowsky, “Dynamic Pattern

Evolution on Scale Free Networks”, PNAS, 2005,

Vol.102(29), 10052 –10057.

[17] Jianjiang Feng, Zhengyu Ouyang, Anni Cai,

“Fingerprint Matching Using Ridges”, Pattern

Recognition, 2006, Vol. 39, 2131 – 2140.

[18] Amos Storkey, “Increasing the Capacity of a Hopfield

Network Without Sacrificing Functionality”, Neural

Systems Group, London.

[19] Sung Jung Hsiao, Kuo Chin Fan, Wen Tsai Sung, Shih

ChingOu, “Innovative Algorithms for Running a Web-

Based Pattern Recognition Search System for a

Component Patterns Database”, Malaysian Journal of

Computer Science, 2002, Vol. 15(2), 78 – 93.

[20] Colin Molter, Utku Salihoglu, Hugues Bersini,

“Introduction of a Hebbian Unsupervised Learning

Algorithm to Boost the Encoding Capacity of Hopfield

Networks”.

[21] Agnes Meyder, Constantin Kiderlen, “Fundamental

Properties of Hopfield NBetworks and Boltzmann

Machines for Associative Memories”, Machine

Learning, vt 2008.

[22] B. Yegnanarayana, Artificial Neural Networks.

[23] Frank Emmert Streib, “Active Learning in Recurrent

Neural Networks Facilitated by a Hebb-like Learning

Rule with Memory”, Neural Information Processing –

Letters and Reviews, November 2005, Vol. 9, No. 2, pp

31 – 40.

[24] Dmitry O. Gorodnichy, “The Influence of Self

Connection on the Performance of Pseudoinverse

Autoassociative Networks”.

[25] N. Davey, R.G.Adams, “Stochastic Dynamics and High

Capacity Associative Memories”.

[26] M.Brown, J.Austin, “Invariant Pattern Recognition

Using Binary Neural Networks”.

[27] D.M. Titterington, “Bayesian Methods for Neural

Networks and Related Models”, Statistical Science,

2004, Vol. 19, No. 1, 128– 139.

[28] J. Schmidhuber, “Reducing the Ratio Between

Learning Complexity and the Number of Time

Varyning Variablesin Fully Recurrent Nets”, In

Proceedings of the Internationla Conference on

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.5, May 2016

49

Artificial Neural Networks, Amsterdam, pp 460 – 463.

Springer, 1993.

[29] L.F.Abbott, Yair Arian, “Storage Capacity of

Generalized Networks”, Rapid Communications,

Physical Review A, November 15, 1987, Vol. 36, No.

10, pp 5091 – 5094.

[30] W.Tarkowski, M.Lewenstein, A.Nowak, “Optimal

Architectures for Storage of Spatially Correlated Data

in Neural Network Memories”, ACTA Physica

Polonica B, 1997, Vol. 28, No.7, pp 1695 – 1705.

[31] Christophe L. Labiouse, Albert A. Salah, Irina

Starikova, “The Impact of Connectivity on the Memory

Capacity and the Retrieval Dynamics of Hopfield –type

Networks.

[32] G.Atithan, “A Comparative Study of Two Learning

rules for Associative Memory”, PRAMANA – Journal

of Physics, December 1995, Vol. 45, No. 6, pp 569 –

582.

[33] C.J.Perez Vicente, “Hierarchical Neural Network with

High Storage Capacity”, Physical Review A, November

1989, Vol. 40, No.9, pp 5356 – 5360.

[34] J.J.Hopfield, “Neural Networks and Physical Systems

with emergent Collective Computational Abilities”,

PNAS, 1982, Vol. 79, pp 2554 -2558.

[35] L.Personnaz, I.Guyon, G.Drefus, “Collective

Computational Properties of Neural Networks: New

Learning Mechanisms”, Physical Review A, 1986, Vol.

34, No. 5, pp 4217- 4228

IJCATM : www.ijcaonline.org

