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ABSTRACT 

In this paper, the batch arrival MX/M/1 queuing system along 

with server breakdowns and multiple working vacations is 

analyzed under exponential distribution. For this model 

Stochastic Decomposition is obtained and particular cases are 

evaluated. Further numerical illustration is also given to 

justify the validity of the model. 
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1. INTRODUCTION 
A classical queuing system may be described as one having a 

service facility at which units of some customer arrive for 

service and whenever there are more units in the system than 

the service facility can handle simultaneously, a queue or 

waiting line is developed. The waiting units take their turn for 

service according to as pre assigned rule and after service they 

leave the system. The study of classical queuing models are 

made by Saaty (1961), Gross & Harris (1985) and Medhi 

(2006). 

The batch arrival is described as the flow of arrivals in 

batches. Gaver (1959) introduced bulk arrival queues, where 

the arrivals could be in batch. Choudhury and Templeton 

(1983) and Medhi (1984) discuss the subject at great length. 

In N-policy the server does not start his service until there are 

N-customers in the queue. This policy is introduced by Yadin 

and Naor (1963) and is designed to minimize server switch 

over’s and to avoid excessive frequent use of setups. Lee and 

Srinivasan (1989), Lee et al., (1994 and 1995) studied the 

behavioral characteristics of batch arrival queues with N-

policy and server vacations. Lee et al., (1994) successively 

combined the batch arrival queues with N-policy. 

Queuing systems with server classical vacations are 

characterized by the fact that the idle time of the server may 

be used for other secondary jobs. Allowing server to take 

vacation make queuing models more realistic and flexible in 

studying real world queuing situations. Applications arise 

naturally in call centers with multi task employees, 

maintenance activity, production and quality control problems 

etc.,. 

In N-policy queuing models, with server vacation, as soon as 

the system empties, the server leaves the system for a vacation 

of random length. When the server returns from the vacation 

and finds N or more customers, he immediately starts his 

service. Otherwise he takes repeated number of vacations 

until he finds N or more customers. This policy is called a 

Multiple Vacations Policy. 

Most of the classical queuing systems the server may fail and 

can be repaired. The performance of the system may be 

affected heavily by these breakdowns and limited repair 

capacity. Queuing systems with such unreliable stations are 

the topics of worth investigating from the performance 

prediction point of view. As a result of breakdowns, service 

facility becomes inoperative and the units demanding service 

can be served only when it is restored to operative state. Wang 

(1995) first proposed Markovian queuing system with 

removable service station. Ke J.C (2003) considered the 

control policy for batch arrival MX/M/1 queuing system under 

N-policy in which the server is characterized by breakdowns 

and multiple vacations. 

In working vacation queues, the server works at a lower 

service rate rather than completely stopping service during the 

vacation period. At the vacation termination epochs, if there 

are customers in the system, the server will start a new regular 

busy period. Otherwise, he takes another working vacation 

which follows multiple working vacations policy. 

In 2002, Servi and Finn, introduced a class of semi vacation 

policies, in which servers work at a lower rate rather than 

completely stopping primary service during vacation. Such a 

vacation is called working vacation (WV). Tian et al., (2008), 

Li and Tian (2007), Xu et al., (2009) considered M/M/1 queue 

with different working vacation policies. Xu et al., (2009) 

studied the results of Liu et al., (2007) to bulk input model 

MX/M/1/MWV. They have formulated the model as two 

dimensional Markovian chain and obtained the PGF of the 

stationary queue length and its stochastic decomposition result 

using the matrix analysis method. Their concept is motivated 

to combine the batch arrival queues under server breakdowns 

and multiple working vacations. 

In this paper, with the help of available literature a batch 

arrival MX/M/1 queuing system along with server breakdowns 

and multiple working vacations is analyzed under exponential 

distribution. The probability generating function (PGF) of the 

system size is obtained through the Chapman-Kolmogorov 

balanced equations satisfied by the steady state system size 

probabilities. The PGF is presented in closed form so that 

various performance measures are calculated easily.  

With the aid of  PGF stochastic decomposition is obtained. 

Further particular cases are evaluated and sensitivity analysis 

is discussed. 

2. MODEL DISCRIPTION 
Consider a batch arrival MX/M/1 queue in which, the arrival 

stream forms a Poisson process and the actual number of 

customers in any arriving module is a random variable X, 

which may take on any positive integral value k(<∞) with 

probability gk. If k is the arrival rate of a Poisson process of 

batches of size k then gk=λk/λ, k=1,2,3,… where λ is the 

composite arrival rate of all batches equal to


1i i . This 

total process, which arises from the overlap of the set of 

Poisson processes with rates { k,  k=1,2,…} is a compound 

Poisson process. Let X(z),E(X) and E(X2) denote the PGF , 

first and second moments of random variable X. 
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The server serves the customers at a time with exponential 

service rate µ in a regular busy period. Whenever the system 

becomes empty at service completion instant, the server starts 

a working vacation during which the service is done at a 

lower rate. The vacation duration V follows an exponential 

distribution with parameter 𝜂. During working vacations, 

arriving customers are served with exponential service rate 

µv(≤µ). 

When a vacation terminates and the server finds the system is 

empty, then the server begins another working vacation. On 

the other hand, if the server finds the system is not empty at 

the vacation termination instant, then he switches to a regular 

service period. The distributions of the service times during 

regular busy period and working vacation period are both 

exponential but with different rates µ and µv respectively. It is 

assumed that, inter arrival times, service time and working 

vacation times are mutually independent of each other. 

The server is subject to breakdowns at any time while 

working, with Poisson rate α. Whenever the system fails, the 

server is sent immediately for repair at a repair facility where 

the repair time is an independent and identically distributed 

random variable Br following exponential distribution         

(1-𝑒−𝛽𝑡 ). The customer, who is just the being served when 

the server breaks down, joins the head of the waiting line and 

resumes the service as soon as the server returns from the 

repair facility. This type of service continues until the system 

becomes empty again. 

This model is denoted by Mx
/M/1/MWV/BD. 

3. SYSTEM SIZE DISTRIBUTION 
Let Ns(t) denote the number of customers in the system at 

time t and  

J(t) = 









.2

.1

.0

ttimeatperioddownbreakinissystemthe

ttimeatperiodbusyregularinissystemthe

ttimeatperiodvacationworkingainissystemthe
 

Then {Ns(t),J(t)} is a Markov process. 

 Let Qn(t) = Pr{Ns(t) = n ; J(t) = 0},        n ≥ 0, 

        Pn(t) = Pr{Ns(t) = n ; J(t) = 1},   n ≥ 1, 

and Bn(t) = Pr{Ns(t) = n ; J(t) = 2},   n ≥ 1. 

denote the system size probability at time t. 

Assuming the steady state system size probabilities as  

Pn = )(tPlt n
t 

 ; Qn= )(tQlt n
t 

 and  Bn = )(tBlt n
t 

exists. 

The steady state equations satisfied by Pn’s, Qn’s and Bn’s are 

given by 

λQ0           =  µV Q1 + µP1                                 (1) 

(λ+𝜂+ µV) Qn = λ
k

n

k

kn gQ




1

+ µV Qn+1  ;n ≥ 1                (2) 

(λ+µ+α) P1      = µP2 + 𝜂Q1 +β B1                 (3) 

(λ+µ+α) Pn      = βBn +λ
k

n

k

kn gP






1

1

 + µPn+1 + 𝜂Qn   ;n ≥ 2    (4) 

(λ+β) B1             = α P1                  (5) 

(λ+β) Bn             = αPn + λ
k

n

k

kn gB






1

1

   ; n ≥ 2                (6) 

To obtain the steady state distribution of the model, the partial 

PGFs, are defined as 

Q(z)  =  n

n

n zQ


0

;  P(z)  =    n

n

n zP


1

  and  B(z)  =   n

n

n zB


1

 . 

By multiplying equation (2) by zn, summing over n ≥ 1 and 

then adding with equation (1) we get 

Q(z) =  
 z  + 1) - (z µ + X(z)) - (1 z v1

01





z

Qzzv 

                (7) 

Similarly proceeding for equations (3) and (4) imply, 

P(z)=

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Similarly equations (5) and (6) imply, 

 B(z) = 
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

X(z)) - 1(

(z) P 

                                 (9) 

Thus the total PGF )(zPBr

MWV
is obtained by adding Q(z), P(z) 

and B(z) 

(i.e)., )(zPBr

MWV
Q(z) + P(z) + B(z) 

)(zPBr

MWV
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Now by using the normalizing condition )1(Br

MWVP 1, which 

yields 
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Now, with the help of the normalizing condition, Q0 can be 

evaluated
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where ρ = 



 E(X) 

By substituting for Q0 in equation (11), the PGF is given by
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)(zPBr

MWV )(
/1//

zP
MWVMM X

 


























)1()1)((

)1)((
1

)1(
1

111

11

zzXz

zXz





































))(1()1(

))(1(
))(1(

))()(()(

))()((
))(1(

111

11

zXzz

zXz
zX

zXzXzzzz

zXzXzz
zX











     

(13) 

Thus the total PGF of )(zPBr

MWV
 is obtained. 

4. DECOMPOSITION PROPERTY 
Equation (13) implies that the total PGF of the system size 

probabilities of the system is the product of the PGF of two 

random variables one of which is 
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This gives the PGF of the system size for the batch arrival 

MX/M/1/MWV queuing model with multiple working 

vacations of Julia Rose Mary, k. and Afthab Begum, M.I. 

(2010) and the other one is, 
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which gives the PGF of the conditional system size 

distribution during the break down period (break down + 

repair). 

Thus the PGF of the MX/M/1/MWV with Breakdowns 

Queuing Model is decomposed into the product of two 

random variables one is the PGF of classical MX/M/1 Multiple 

Working Vacations Queuing Model and the other is PGF of 

the additional Breakdowns in the Queue. This justifies the 

Decomposition Property. 
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Thus the expected system size of the model is evaluated. 

6. PARTICULAR CASES 
Case 1: M

x
/M/1 Multiple Working Vacation Model 

The results of MX/M/1 Multiple Working Vacation Model can 

be obtained by applying 0,  in the corresponding 

equations of (7) and (8), then we get 
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also reduced. 

Also by letting 0  , the expected number of 

customers in the system is reduced to 
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Thus from the equations (15) and (16) the results obtained 

coincide with the results of (Julia Rose Mary and Afthab 

Begum (2011)). 

Case 2: M/M/1 Multiple Working Vacation Model 

The results of M/M/1 Multiple Working Vacation can be 

obtained by letting X(z)=z and 0,   in the corresponding 

equations. 

Let z1< 1 and z2> 1 be the two roots of the equation, 
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Hence from the equations (19) and (20) the results we 

obtained coincide with the results of (Liu et al., 2007). 

7. SENSITIVITY ANALYSIS 
Consider the expected system size (L) of the model 

MX/M/1/MWV/BD queuing system. 

The values of the expected system size for the model are 

presented for different arrival rates λ and the service rates in 

vacation μv.  

By considering the parameters as 

(μ,η,p,α,β)=(0.2,0.001,0.75,0.04,0.2) the expected system 
size of the model is calculated. The calculated values are 
tabulated and are represented in the following graph. 

Table : Expected system size with respect to λ and μv. 

       μv       

λ 

0.005 0.015 0.025 0.035 0.045 

0.1 46.4917 37.3487 28.2057 19.0627 9.9197 

0.2 50.9075 41.7644 32.6214 23.4784 14.3354 

0.3 52.3527 43.2097 34.0667 24.9237 15.7807 

Graph : Expected system size of the model 

MX/M/1/MWV/BD queuing system. 

 

It is noted from the table values and graph that the expected 

system size of the model (L) increases as λ increases and 

decreases as μv increases. 

8. CONCLUSION 
Thus in this paper the total PGF of the MX/M/1 queuing 

system under server breakdowns and multiple working 

vacations is derived. With the help of PGF the stochastic 

decomposition property is verified, and moreover the 

particular cases are obtained. Further the validity of this 

Mx/M/1/MWV/BD model is justified with the help of 

sensitivity analysis. The Future scope of the idea of this model 

can be the application of fuzzy concept and finding out the 

crisp outputs. 
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