
International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.8, May 2016

39

A Study on the Nature of Code Clone Occurrence

Predominantly in Feature Oriented Programming and the

Prospects of Refactoring

U. Devi
Dept. of CS &IT,

The IIS University
Jaipur, Rajasthan

A. Sharma
Dept. of CS & IT,
The IIS University
Jaipur, Rajasthan

N. Kesswani
Dept. of Comp. Science
The Central University

Rajasthan

ABSTRACT

In this position paper, it is tried to analyze the diverse type of

code clones which is present and can easily be perpetuated in

feature oriented programming. Along with that, a brief

summary of the type of code clones and the use of

Refactoring methodologies and tools which is effectively

known to remove the problem of code clones is also

discussed. The main observation that is made in this paper is

the various type of code clones which are present in FOP.

Through this discussion, it is intended to draw the attention to

the various ways in which code clones could propagate and

how important it is to curb it at the initial stages to reduce the

complexities.

General Terms

Code Clone Detection techniques and tools, Metrices,

Refactoring Methods.

Keywords

Code clones, Refactoring, Code Clone metrics, Code clones in

FOP and OOP

1. INTRODUCTION
Replicated code fragments in source code, commonly known

as Code Clones [1], is an exhaustive research topic. A

substantial effort is also invested in analyzing how and when

the code clones negatively influence the software quality.

Some of the most common consequences of Code Clones on

the quality of software systems are : high maintainability,

increased code size, increased cost and significantly

increased errors due to inconsistent changes. An established

modus operandi to counter the problem of Code Clones is

Refactoring. Refactoring is the process of changing a software

system in such a way that it doesn’t alter the external behavior

of the code but still improves the internal structure [2].

Typically a Software Product Line (SPL), consists of a set of

features. To efficiently implement SPL, novel programming

paradigms, such as Feature Oriented Programming has gained

momentum over the years, which subsequently help in

overcoming certain limitations of Object Oriented

Programming (OOP). FOP has higher level of modularity and

reusability in comparison to OOP[3]. Although FOP has

potential to alleviate OOP related code clones, it is possible

that it may introduce some of its own – FOP related code

clones.

The paper is structured as follows. In Section 2, we discuss

the various types of Code Clones, their presence with respect

to FOP and OOP and a discussion on Code Clones detection

tools. Afterwards, we point out the various Refactoring

techniques used along with the tools for its efficient

implementation which is explained in the next section. In

Section 4, we have distinguished between FOP related code

clones and OOP related code clones with the help of an

example. We conclude our paper with a discussion which

summarizes our observations (Section 5) and a conclusion

(Section 6).

2. CODE CLONES: TYPES AND TOOLS
This section discusses the concept of Code Clones and its

various types, rather the forms, in which it shows its presence

and also the tools to deal with them.

2.1 Code Clone Types
It is widely accepted that code clones have a negative effect

on the software system [7]. Code clones or Code smells can

aid the identification of SPL refactorings and it improves

evolvability and maintainability of delta-oriented SPLs.

Given under are the types of Code clones based on their

textual (Type I to III) and functional (Type IV) similarities

and their relationship (Fig. 1) :

a) Code Fragments that are (almost) identical are

called Type I clones. Only minor differences

regarding formatting such as comments or

whitespaces are allowed.

b) A common pattern of cloning is Copy & Paste-and-

Modification, which leads to Type-II clones. These

clones diverge more than Type-I clones so that even

differences in names of identifiers, literals, types,

layout, or comments are included in this type of

clones.

c) Type-IIIclones additionally allow changing,

adding, or deleting statements. Since deleting a

statement from one code fragment can be also

interpreted as adding to the corresponding (cloned)

statement , both terms (deleting and adding

statements) are treated synonymously. Type-III

clones are also referred to as gapped clones, where

the missing statements are called gaps.

Type-IV clones can be syntactically different: The cloning

relation for this clone type is based on the semantic similarity

between two or more code fragments and thus they are also

called semantic clones [1].

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.8, May 2016

40

Fig 1 : Relation between different Clone Types

2.2 Code Clones Detection Techniques and

Tools
Many clone detection approaches have been proposed in

literatures, however, the techniques can essentially be

distinguished on the basis of type of information their analysis

is based upon and the kind of analysis techniques that have

been used. There are mainly five types of clone detection

techniques. They are summarized here briefly. Table 1

provides the classification of code clones and its

techniques[6].

a) Textual Approach : They are the text based

approaches which uses little or no transformation on

the actual source code before any comparison and in

fact taken as it is for clone detection process.

b) Lexical Approach : Also called Token-based

approach wherein source code is transformed into a

sequence of token and scanned for duplicated sub

sequence and corresponding original clones are

returned as clones.

c) Syntactic Approach : It uses a parser to convert

source program into parse trees or abstract syntax

trees (AST), which is later processed using tree

matching or structural metrics to find clones.

d) Semantic Approach : It uses static program

approaches than simply using syntactic similarity

for finding clones.

e) Metric Based Approach : It collects a number of

metrics for code fragments and then compares the

vectors of those metrices rather than comparing the

source code or ASTs directly.

Table 1.Classification of Code Clones AndTechniques

Category Clone Types

Textual Approach Type – I

Lexical Approach Type - I,II

Syntactic Approach Type – I, II, III

Semantic Approach Type – I, II, III

When comparing code clone detection techniques, precision

and recall are often referenced as measures of accuracy and

completeness of candidate code clones [4].

Precision (P) = Number of clones correctly found

 Total number of clones found

Recall (R) = Number of clones found correct

 Total number of clones found

A list of code clone detection tools on the basis of their

techniques has been listed below in Table 2 [6].

Table 2. Taxonomy of Clone Detection Techniques And

Tools

 Tools

Text Based Johnson, Duploc, sif, DuDe, SDD, Marcus,

Basic NICAD, Full NICAD, Nasehi, Simian

Token Based Dup, CC Finder(X), D-CCFinder,

GemX/Gemini, RTF, CP-Miner, SHINOBI,

CPD, CloneDetective, clone, iClones

Tree Based CloneDr, Asta, cdiff, cpdetector, Tairas,

Deckard, CloneDetection, CloneDigger,

C2D2, Juiellerat, SimScan,clast, Coogle

Metric Based Davey

Graph Based Duplix, Gabel, Komondoor

CodeClone Metrics: There are some basic set of clone

metrics on the basis of which the tools are compared which

are regarded for consideration in this research [8]. They are

given in Table 3.

Table 3. Metrics Used Based Onthe Clone Form

Code

Clone

Category

 Metrics Used

File

Metrics

NBR, RSA, RSI, CVR,RNR

Clone

Set

Metrics

LEN, POP, NIF, RAD, RNR, TKS, LOOP, COND

Line

Based

Metrics

LOC, SLOC, CLOC, CVRL

FOP

Based

Metrics

SLOC, CR

Type-IV

Type-III

Type-II

Type-I

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.8, May 2016

41

3. REFACTORING: AN ANTIDOTE

FOR CODE CLONES
Refactoring is one popular and promising technique to

eliminate the problem of Code Clones. Refactoring as

described earlier, is the sequence of code changes which

improves the quality of design (internal structure) without

changing the behavior of software (external structure) [2].It is

a disciplined way to clean up code that minimizes the chances

of introducing bugs. As such, a refactoring is usually a small

change to the software, although one refactoringcan involve

others. And by applying appropriate methods code clones can

be improved, thereby, improving the efficiency, performance,

reuse and maintainability of the software programs

[9],[10],[11],[12],13]. For FOP, features are considered as the

source and targets of refactoring rather than classes. Benefits

of Refactoring includes[14],[15],[16],[17] :

 Improves maintainability

 Helps in better understandability and easier

modification

 Easier to add new features

Improves code structure and design thereby helps in better

and faster code development.Though refactoring is a feasible

approach to deal with code clones, it involves a series of

steps, the guidelines for which are given below :

 Identifying the part of software that should be

refactored

 Deciding which refactoring method should be

applied

 Applying refactoring

Assessing the effects of applied refactoring methods on code

quality attributes.

3.1 Refactoring Techniques
M.Fowler has presented refactorings in a catalogue like

manner [2],[5]. While these refactorings are mainly done for

object oriented programming, their applicability is limited for

software product lines [2]. Given below, in Fig. 2, are the

different types of refactorings which can be used either

individually or with the combination of other refactoring

techniques.

Fig 2. Types of Refactoring

3.2 Refactoring Tools
Many software editors and IDEs have automated refactoring

support. There is no standard refactoring browser for Java as

there is for SmallTalk, however given under are few of these

editors or refactoring

tools[18],[19],[20],[21],[22],[23],[24],[25]:

(a) Based on Java –

Table 4 (a). Refactoring Tools Based On JAVA

Refactoring Tools Supporting Language

IntelliJ IDEA Java, JSP, XML, CSS,HTML

and JavaScript

WebStorm JavaScript

Eclipse Java, to a lesser extent

c++,PHP,Ruby,Javascript, R,

Ada, C, COBOL

NetBeans Java

JDeveloper Java

DesignPatternTransformer Java, C, C++

JRefactory Java

Condenser No support beyond JDK 1.4

RefactorIT Java

XRefactory C, Java (doesn’t support

newer JDK)

Refactoring Change
Change Bidirectional association to
UnidirectionalChange Reference To Value
Change Unidirectional association to
BidirectionalChange Value To Reference

Encapsulate
Encapsulate Collection

Encapsulate Downcast

Encapsulate Field

Consolidate
Consolidate Conditional Expression

Consolidate Duplicate Conditional
Fragments

Extract
Extract Class
Extract Interface
Extract Method
Extract Module
Extract Subclass
Extract Superclass
Extract Surrounding
Extractb Variable

Hide
Hide Delegate

Hide Method

Inline
Inline Class
Inline Method
Inline Module
Inline Temp

Introduce
Introduce AssertionIntroduce Class AnnotionIntroduce Expression BuilderIntroduce Foreign MethodIntroduce GatewayIntroduce Local ExtensionIntroduce Named ParameterIntroduce Null ObjectIntroduce Parameter Object

Move
Move Eval from Runtime to Parse Time

Move Method

Move Field

Pull Up
Pull Up Constructor Body

Pull Up Field

Pull Up Method

Push Down
Push Down Field

Push Down Method

Remove
Remove Assignments to Parameters
Remove Control Flad
Remove Middle Man
Remove Named Parameter
Remove Parameter
Remove Setting Method
Remove Unused Default Parameter

Rename
Rename Method

Replace
Replace Abstract Superclass with ModuleReplace Array with ObjectReplace Conditional with PolymorphismReplace Constructor with ObjectReplace Data Value with ObjectReplace Delegation with HierarchyReplace Delegation with InheritanceReplace Dynamic Receptor with
Dynamic Method Definition
Replace Parameter with Method

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.8, May 2016

42

(b) Based on other languages –

Table 4 (b). Refactoring Tools Based On OtherLanguages

Refactoring Tools Supporting Language

CloneDR C# versions 2.0,3.0,4.0 and

5

TransMogrify CSS, HTTPS server support

Visual Studio .NET, C++

ReSharper Addon for Visual Studio

CodeRush Addon for Visual Studio

XCode Objective C

AppCode Objective C, C++

SmallTalk Refactoring

Browser

Smalltalk

(c) Based on Product Lines -

VAmPiRE (Variant-Preserving Refactoring for feature

oriented software product lines), Aries, RefactoringCrawler,

CeDAR, FLiPeX.

4. CODE CLONES IN FOP AND OOP

HOW IT STILL PROPAGATES
Clones mainly fall into three categories : IfStatement,

MethodDeclaration and TypeDeclaration filtered out by

syntactical classification [3].FOP specific clones are mostly

distributed over alternative features with a common parent

feature. Clones detected are inside Syntactical blocks such as

Conditionals or Methods because FOP has coarse grained

nature due to decomposition of modules (most of the detected

codes are at block level). FOP related clones :

• Occur between alternative features, such features

are often semantically related because of similar

concepts they implement.

• Amount of clones in SPLs developed from scratch

is higher than in SPLs decomposed from legacy

applications.

Given below, fig.3, is a diagrammatic representation of FOP

related and OOP related code clones.

Fig 3. FOP and OOP related Code Clones

Let us take an example for further clarification in this context.

Here, F1, F2, F3,….,F10 represent features of a software

product line.

And

C1, C2,C3,C4,C5,C6 are the various classes present in the

features. (Fig.4)

Next, is the explanation of the types of Code Clones which

can be diagnosed in this product lines and if not removed

could have a detrimental effect on product line.

Fig 4. Features and Classes

1. Code Clones lying in Same Feature but Different

Classes :

F2 -> C1 and F2 -> C2.

2. Code Clones lying in Different features : Same

classes appearing in different features :

F2 -> C1, C2 and F3 -> C1, C2.

3. Code Clones lying in different features and different

classes :

F2 -> C3, F4 -> C5

Code Clones

FOP Related Code
Clones

Code clones which
exists across

features

OOP Related Code
Clones

Code Clones
within features and
across classes in a
particular feature

FI (C1, C2)

F2 (C1, C2,

C3)

F5

(C1,C2,C3,C6)

F6

(C1,C2,C3,C4,

C6)

F3 (C1,C2,C4)

F7 (C1,C2,C4) F8 (C3,C4,C6)

F4

(C1,C2,C3,C5)

F9 (C3,C4) F10 (C2, C6)

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.8, May 2016

43

4. Hybrid Clones : Code Clones lying in multiple

features and multiple classes :

F5 -> C1, F6 -> C2 and F8 -> C3

Next, is the elaboration upon the above explained code clone

classification with the help of an example, BankAccount

where Overdraft, Interest (sub feature is InterestEstimation),

CreditWorthiness, DailyLimit are optional features and Lock

is a mandatory feature with sub feature as Transaction. The

above features and sub features have java classes.

Fig.5. BankAccount Example

Thus, the code clones based on the above discussion could be

categorized as :

1. Code Clones lying in Same Feature but Different

Classes :Interest -> Account.java , Application.java

2. Code Clones lying in Different features : Same

classes appearing in different features :

Interest -> Account.java, Application.java

DailyLimit -> Account.java, Application.java

3. Code Clones lying in different features and different

classes :

Overdraft -> Account.java

Transaction -> Transaction.java

4. Hybrid Clones : Code Clones lying in multiple

features and multiple classes :

Interest -> Application.java

Transaction -> Transaction.java

5. DISCUSSION
In the following, we shortly discuss some of the observations

made from above literature.

 Firstly, the different types of code clones have been

classified and the code clone detection tool have

also been mentioned based on the clone detection

techniques. But there’s still a lack of proper

understanding of which clone type are FOP related

or OOP related. Of course, some of the code clones

in OOP have been successfully avoided in FOP but

it is still not clear if they are the similar code clones

originating as FOP related code clones. The

presence of code clones in FOP directly affects the

quality, cost and increases complexity.

 Secondly, it is attempted to classify FOP related

code clones in four different types with increased

complexity in each subsequent type. This kind of

observation clearly places the importance towards

the study of code clones in FOP with respect to

complexity and how further it could be propagated

if not controlled.

 Thirdly, there is a lack of refactoring approach for

proactive and reactive development of software

product lines. Also most of the refactorings

proposed are semi-automated. Though there are

works on theory of stepwise evolution of SPL with

usability as main focus, no implementation or case

study exists []. Also, more study is required to

quantify which causes are important for FOP related

clones and which are not.

 Another important point which was observed in the

light of this study was that in the existing

methodologies, FOP is able to alleviate OOP related

code clones but instead introduces FOP related code

clones. Aspect Oriented Programming (AOP) is also

known to have AOP related code clones. But in the

recent times, there have been no such literature or

work which could identify the presence of code

clones in Delta Oriented Programming (DOP),

another programming paradigm for implementation

of SPL. The research is still ongoing.

 An additional dimension in the code cloning area

could be upon the Product Configuration, as in,

there could be a possibility of a product which

consists of clone free features. Then the product

shall have low maintainability with respect to code

clones. But the reverse may also be true, i.e. a

product in which all its features suffer from the

problem of code clones, shall have high

maintainability. A study in this direction could

prove helpful in many areas.

 It is also a potential area of study whether and if

cross cutting concerns are related to the propagation

of code clones. If the problem of code clones are

present, then how can it be handled effectively?

Another facet is the concept of separation of

concerns which promotes modularity. The notion of

cross cutting concerns has gained wide popularity in

AOP.

 Lastly, one of the most essential requirements of

today is of a tool which could easily perform all the

activities starting with detecting code clones,

classifying them according to their types and

refactor them.

However, it is established that a fraction of FOP related code

clone could be removed and a feasible approach to do this is

through refactoring. But more study and research is to be done

to find out more about the classification of code clones in

different programming paradigm, their characteristics, the

causes and their removal in feature oriented SPLs.

6. CONCLUSION
In this paper, we have tried to analyze how negatively code

clones affect the source code. Code clones are categorized and

detected based on certain established approaches. The tools

which have been given are able to categorize code clones

based on the approaches. Refactoring is one remedial measure

to tackle with the problem of code clones. The methods

generally lie in four category which has been exhaustively

mentioned above along with the refactoring tools. We have

also tried to explain with an example How code cloning is

interrelated and overlapping among classes and features and

how there is but a small difference between FOP related and

OOP related code clones, an area which needs to be explored

further to help throw light for its cause and effect, particularly

in regard to feature oriented SPLs. And finally, we have put

forward some research questions which are open ended and

could be further initiated with proper study.

International Journal of Computer Applications (0975 – 8887)

Volume 141 – No.8, May 2016

44

7. REFERENCES
[1] S. Schulze.”Analysis and Removal of Code Clones in

Software Product Lines”. Dissertation. University of

Magdeburg, 2012.

[2] S. Schulze, O. Richers, and I. Schaefer. “Refactoring

delta-oriented software product lines”. In AOSD. pp. 73-

84. ACM, 2013.

[3] S. Schulze, S. Apel and C. Kästner. “Code Clones in

Feature-Oriented Software Product Lines”. In

Proceedings of the 9th International Conference on

Generative Programming and Component Engineering

(GPCE) (Eindhoven, The Netherlands), New York, NY,

USA. pp. 103-112. ACM Press, October 2010.

[4] Balwinder Kumar, Dr. Satwinder Singh, “Code clone

detection and Analysis using Software Metrics and

Neural Network- A Literature Review”, In IJCST,

Volume 3, issue 2, March-April 2015.

[5] M. Fowler. “Refactoring: Improving the Design of

Existing Code”. Addison-Wesley, 1st Edition. USA,

2000.

[6] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison

and evaluation of code clone detection techniques and

tools: a qualitative approach,” In Science of Computer

Programming. Volume. 74, no. 7. pp. 470–495. 2009.

Special Issue on Program Comprehension (ICPC 2008).

[7] C.K. Roy and J.R. Cordy, “A survey on software clone

detection research,” Queen’s Technical Report: 541. ,

page 115. 2007.

[8] http://www.ccfinder.net/ccfinderx.html

[9] E. Murphy-Hill and A. P. Black, “Refactoring Tools:

Fitness for Purpose,” In IEEE Softw.. Volume. 25, no. 5.

pp. 38–44. 2008

[10] S. Schulze, T. Thum, M. Kuhlemann, and G. Saake.

“Variant-preserving refactoring in feature-oriented

software product lines”. In VaMoS. pp 73-81. ACM,

2012.

[11] William F. Opdyke, “Refactoring Object-Oriented

Frameworks,” PhD thesis, University of Illinois,

Urbana-Champaign. 1992. Tech. Report UIUCDCS-R-

92-1759

[12] N. Kumari and A. Saha, “Effect of Refactoring on

Software Quality,” InFourth International Conference on

Advances in Computing and Information Technology (

ACITY 2014). Delhi ,India. May 2014.

[13] Bart Du Bois, P. V. Gorp, A. Amsel, N. V. Eetvelde, H.

Stenten, S. Demeyer, and T. Mens, “ A discussion of

refactoring in research and practice,” Technical report.

University of Antwerp. January 2004.

[14] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue,

“Refactoring support based on code clone analysis,” In

Proc. of the Product Focused Software Process

Improvement Int’l Conference. pp. 220–233. 2004.

[15] E. Kodhai and S. Kanmani, “Method-Level Code Clone

Modification using Refactoring Techniques for Clone

Maintenance,”In Advanced Computing: An International

Journal (ACIJ). Vol.4, no.2. March 2013.

[16] D. G. Devi and Dr.M.Punithavalli, “Comparison and

evaluation on metrices based approach for detecting code

clone,” In Indian Journal of Computer Science and

Engineering (IJCSE).

[17] G Singh and N. Kohli ,”Evaluating the effect of code

clones on software maintenance cost,” In Apeejay

Journal of Computer Science and Applications. 2014.

[18] http://dpt.kupin.de/

[19] http://jrefactory.sourceforge.net/

[20] http://www.eclipse.org/

[21] http://www.semdesigns.com/Products/Clone/.

[22] http://www.intellij.com/idea/

[23] http://www.instantiations.com/jfactor/

[24] http://www.refactorit.com/

[25] http://www.xref-tech.com/xrefactory/

IJCATM : www.ijcaonline.org

http://dpt.kupin.de/
http://jrefactory.sourceforge.net/
http://www.eclipse.org/
http://www.semdesigns.com/Products/Clone/
http://www.intellij.com/idea/
http://www.instantiations.com/jfactor/
http://www.refactorit.com/
http://www.xref-tech.com/xrefactory/

