
International Journal of Computer Applications (0975 – 8887)

Volume 142 – No.13, May 2016

16

DRC Protocol for the Response Time Reduction in CAN

based Distributed Embedded System

Hiteshkumar Lad
M.Sc.IT Programme
Veer Narmad South

 Gujarat University, Surat, India

Vibhutikumar Joshi
Department of Physics

Veer Narmad South
 Gujarat University, Surat, India

ABSTRACT

Controller Area Network operational characteristic supports

periodic, sporadic and event based task behavior of distributed

embedded system for industrial applications. CAN connect

distributed Electronics Control Units (ECU) serially in the

network and share measured data of different parameters and

control information from the different places. System

reliability and redundancy can be affected by changing the

number of connected ECUs, Bus length, data rate, etc. In this

paper proposed algorithm tries to improve reliability of CAN

by changing data rates, according to the length of transmission

line for message transmission in the network. Also, Data Rate

Change DRC protocol improves temporal behavior of the

system with small CPU overheads.

Keywords

Controller Area Network (CAN), Distributed Embedded

System (DES), Data rate Change (DRC), jitter, Message

Length

1. INTRODUCTION
Controller Area Network (CAN) offers a communication

stability and robustness consistency at low cost, which

increase its demand in different industrial field applications

[1, 4]. As a result, CAN modules are available as "on-chip"

component in advance microcontrollers. CAN bus is used to

connect Distributed Embedded System modules together and

establish network [9]. CAN bus transmits messages in a short

bunch of data (up to 8-byte), that is preferred in automation

applications to transfer controlling information [3, 4, 14]. As

special feature of CAN, a fault confinement mechanism

improves the temporal behavior and reliability of the system.

CAN bus is considered under "Class-c network" based on the

standards given by Society for Automotive Engineers (SAE)

which can transfer information at 125kbps to 1 Mbps data

transfer rate. Normally it is observed that Network establishes

communication at a fixed data transfer rate to avoid

complexity in industrial application. CAN uses multi-master

broadcast concept for message transmission. using filter

mechanism, the receiver filters out the relevant message only.

For CAN, more than one nodes take part in arbitration

process. To avoid collision in network CAN apply Carrier

Sense Multi Access (CSMA/CA) policy [10, 11]. In this

policy, nodes should be able to overwrite a recessive bit,

during the arbitration process. This induced the problem of

physical length and speed of a CAN bus [2]. The change in bit

timing affects on signal propagation in prefixed network

length [2]. As per SAE standards, CAN bus length should be

500 meters for communication speed of 125 kbps and 40

meters length for 1Mbps [2]. In this paper, we have improved

response time efficiency of the network by reducing physical

transmission time for different length of transmission line.

2. INTRODUCTION TO CAN

STANDARD 2.0A
S

O

F

Arbitrati

on field

Control

field

Data

field

CRC

field

ACK

field

E

O

F

Figure 1: Data frame format for CAN

CAN Protocol is uses Non-Return-Zero (NRZ) coding for

information transmission [5, 6]. CAN bus communication is

asynchronous type transmission, which does not require to

transmit clock pulses along with information [5]. CAN-2.0-A

Data Frame Specification format shown in Figure 1 where the

single bit Start Of Frame (SOF) field provides

synchronization between nodes, arbitration field containing

11-bit identifier for frame identification, 6-bit control field

containing information about data length and frame is an

expansion, 8-byte data field carrying information / Data, 15-

bits long error detection field(CRC) use to check received

data sequence is same as transmitted data. Acknowledgement

field uses to check frame received at receiver and End of

Frame (EOF) field [12]. IN CAN at transmitter node 5

identical bits of same polarity found then hardware stuffed

one additional bit with opposite polarity and this process

called bit stuffing. Total 111 bits are used for 8-byte data

transmission without bit stuffing and if one considers worst

case scenario with bit stuffing than 135 bits are required to

represent message for 8-byte data field [7]. This Message

length variation cause by bit stuffing mechanism effects on

predictability of CAN network transmission scheduling of real

time system results in inefficient operation of data

transmission [08].

3. CAN TRADITIONAL SYSTEM

MODEL AND ANALYSIS
Tindell et.al in 1994 presented a CAN network Data traffic

scheduling analysis considering worst case latencies response

time for fixed priority frame [13]. To analyze the system

model Tindell et.al considered 11 bit message identifier with

fixed priority for static data payload of the set of 1 to 8 byte.

The system model explains worst case response time analysis

with fixed priority scheduling for non pre-emptive messages.

Eq.1 defines worst case response time Rm in terms of queuing

jitterJm , waiting time Wm and Physical transmission time Cm

for the mth message.

Rm = Jm + Wm + Cm (Eq. 1)

Where: Jm is the queuing jitter which gives the latest queuing

time of the message, relative to the beginning of the task.

International Journal of Computer Applications (0975 – 8887)

Volume 142 – No.13, May 2016

17

Wm is the Waiting time (delay) for the transmission

introduced by high priority messages or continuity of lower

priority message transmission, and

Cm is the transmission time of mth message to transmit on

physical bus.

Transmission time is decided based on total message length,

including data content, additional stuffed bits, and data

transmission speed and frame overheads of the message [13].

In case, due to occurrence of some event, System task

activates and put message in queue for the transmission.

The factor affecting queuing delay is given by Eq.2 as below

[13]:

wm = Bm +
Wm + Jj + Tbit

Tj
 Cj

∀j ∈hp m

 (Eq. 2)

Where: The hp(m) is the set of messages considered of higher

priority than mth message.

Tj is the time require by message j to complete the

transmission.

Jj and Cj are queuing jitter and physical transmission time for j

th message respectively.

Wm is Waiting time (delay) for the transmission introduced by

high priority messages or continuity of lower priority message

transmission. s

Tbit is the unit bit time for configured speed.

Blocking time delay (Bm) is introduced by the time required to

complete the pre-initiated transmission of lower priority

message k as compare to m message. The Bm time can be

expressed by Eq.3[13].

Bm = max
∀k∈lp (m)

(Ck) (Eq. 3)

Where: lp(m) is the set of lower priority messages. Ck

consider as Physical transmission time for k message.

The Physical transmission time require for the successful

transmission of message m is defined as Cm in Eq.4[13].

Cm = ((g + 8Sm + 13 +
g+8Sm −1

4
)Tb) (Eq.4)

Where the term Sm consider as number of payload data bytes

of message m. g is used for message header value, including

arbitration field, control field and CRC value. Term Tb

indicates bit time of the bus, ((𝑔 + 8𝑆𝑚 − 1)/4) term used for

stuffed bits, total 47 overhead beats considering message

heading and control information. During the transmission, if 5

consecutive bits found with same polarity, then opposite

polarity bit is stuffed after 5 consecutive bits in content at

transmitter. This stuffed bit is also considers as a part of bit

sequence i.e. each stuff bit begins a sequence of 5 bits that

itself also subject to bit stuffing. In Eq.4, g value is 34 for

standard format (11-bit identifiers) or 54 for extended format

(29-bit identifiers).

4. INTRODUCTION OF DRC

PROTOCOL
Normally, same network data rate is set for long range and

short range data communication (i.e. Data transmission rate,

configure at 125kbps for network wire of the length of 500

meters and 40 meters as well). CAN supports high data

transmission rate of 1Mbps for the short range up to the 40

meters length of transmission wire while 125 Kbps Data

transmission rate for both long range and short range

communication. If 125 kbps data transmission rate set for long

range and 1Mbps data transmission rate set for short range

transmission then Network bandwidth can be better utilized.

To avoid complexity in the system model consider DRC

protocol message transmission is implemented using Time

Division Multiplexing Access (TDMA) strategy. Therefore

the possibility priority collision occurrences as well as

message blocking are avoided. Here in this paper, a CAN bus

communication with different length of transmission line and

corresponding algorithm has been developed for the

implementation of DRC. If bus length of the transmission

line is above 40 meters, the network uses 125 kbps data rate

while for the length of transmission line below 40 meters, the

network uses 1 Mbps data rate. In order to avoid error in the

data transmission, synchronization between every node is

mandatory. The DRC algorithm takes care of synchronization

between node by sending the control code from transmission

node on 125kbbps without any payload. This control code sets

1mbps speed for all the nodes of short distance and "listen

only" mode to all long distance nodes. The data are

transmitted on 1 Mbps speed for short distance nodes is

carried out only once. On the completion of successful

transmission, the "listen-only" mode is removed and all short

and long distance nodes are set to 125kbps data rate again.

In DRC Due to switching between 1Mbps and 125 Kbps data

transmission rate physical Transmission time varies which can

be given by Eq. 6 and Eq.7. Response time Rm_DRC for worst

case condition of DRC protocol can be described by Eq.5.

Rm_DRC = Jm_DRC + Cm_DRC (Eq. 5)

Where, Jm_DRC is queuing jitter time considered for mth

message transmission using DRC protocol described in Eq.11.

 Cm_DRC is Physical transmission time considered for mth

message described in Eq.8.

Physical transmission time Cm_long for long range

communication is expressed by Eq.6 which is similar to the

Cm given by Eq.4.

Cm_long = ((g + 8Sm + 13 +
g + 8Sm − 1

4
)Tb (Eq. 6)

Transmission time Cm_short for short range communication can

be expressed by Eq.7.

Cmsh ort
= (g + 13 +

g − 1

4
)Tb1 + 2Tspc hange + (g + 8Sm

+ 13 +
g + 8Sm − 1

4
)Tb2 (Eq. 7)

Cm_DRC =
Cm_short , distance < 40 meters

Cm_long , distance ≥ 40 meters
 (Eq. 8)

In the Eq-7, Tb1 is bit time for 125kbps speed, Tb2 is bit time

for 1mbps speed and Tspchange is a process time required for

switching of transmission speed which is negligible. Jittering

queue time Jm_DRC is expressed by Eq.-11

International Journal of Computer Applications (0975 – 8887)

Volume 142 – No.13, May 2016

18

Jitter queuing for short range message described in Eq.9 that

is the augmentation of queuing time require for code message

without and with payload respectively.

Jm_short = Jm_code + Jm_message (Eq. 9)

Jitter queuing time for long range message described in Eq.10

is similar to normal network queuing time.

Jm_long = Jm (Eq. 10)

Jitter queuing time for DRC algorithm messages described in

Eq.11.

Jm_DRC =
Jmshort

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 40 𝑚𝑒𝑡𝑒𝑟𝑠

jm long
 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≥ 40 meters

 (Eq. 11)

5. PROPOSED ALGORITHM
Proposed DRC protocol Flow charts for transmitter and

receiver nodes are shown in Figure 2 and Figure 3.

5.1 Transmitter Algorithm
Step-1: Collects information for the data transmission.

Step-2: Identify a data transmission range. If it is a short range

(under 40 meters) transmission, then step-3 is

bypassed and follows the steps-4 directly. If it is a

long range (above 40 meters) transmission, then step-3

follows.

Step-3: Transmit data with full load at 125kbps speed and

move to first step again.

Step-4: Generate group code in the frame identifier field and

transmit frame with payload.

Step-5: Performs transmission speed switching operation and

changes the speed to 1Mbps.

Step-6 Transmits the frame with data in payload.

Step-7: After completion of transmission, switching operation

performs and sets 125 kbps speed again.

Figure 2: DRC algorithm flowchart for Transmitter node

5.2 Receiver Algorithm
Step-1: Extract the identifier field and payload value from

received message of control field.

Step-2: If payload value is '0' then flow checks for the

matching of the identifier field for the group code. If

code matches then the flow bypasses the step-3.

Step-3: If identifier field does not match with speed change

group code, then speed remains unchanged.

Step-4: Changes speed to 1mbps and starts receiving message.

Step-5: After completion of successful reception of message

the speed again changed to 125kbps.

Step-6: Wait for next message reception.

No

Configure system for

data collection

Start

IF message for

short distance

Set code as frame identifier

according to distance category

and payload value in data field

Send message without

payload at 125kbps

and include range code

Send Data with

payload at 125kbps

Change speed from

125kbps to 1Mbps

Send Data with payload

Change speed from

1Mbps to125kbps

Collect data from

data acquisition

system

Yes

International Journal of Computer Applications (0975 – 8887)

Volume 142 – No.13, May 2016

19

6. EXPERIMENTAL WORK
DRC protocol has been tested on a test bench contained three

Freescale Demo board DEMO09S08DZ60 with CAN trans-

receiver IC TJA1040 and microcontroller- MCS9S08DZ60.

Algorithm is developed and implemented using C-

programming language in Freescale Code-worrier tool.

Experiments performed on different sized payload and

measured its effect on the response time. Out of three one

board is used as master node and rest of two boards are used

as slaves. The Experimental work successfully established

message transmission in CAN with TDMA technique.

Normally when message is transmitted using TDMA

technique, the queuing delay is consider to be Zero. It has

been observed experimentally that the transmitter node and

two receiver nodes communicates during predefined allotted

timeslot only.

Table 1. Response time for Normal and DRC protocol

based CAN network communication

Payload

(Byte)

Normal Network

Communication

Response time

(microsecond)

DRC protocol based

Network

Communication

Response time

(microsecond)

Long

range

Short

range

Long

range

Short

range

8-Byte 1555 1555 1555 892

7-Byte 1073 1073 1073 868.63

6-Byte 987.8 987 987 851.88

5-Byte 920.12 920 920 834.3

Figure 4: Normal Network message Vs DRC protocol

message Response time for Short range Messages

Figure 5: Normal Network message Vs DRC protocol

message Response time for Long range Messages

7. CONCLUSION
The results for different payload are presented in the bar graph

shown in Figure 5. It can be observed in Figure-5 that for the

long distance transmission with and without DRC Protocol,

the response time difference is not significant. Figure 4

YES

Start

Configure system

Receiver module

Identifier value =

short distance

code

Receive message

Change speed 125kbps

to 1 Mbps

Receive message at

1mbps data rate

Use data in

application

Change data rate

1Mbps to 125kbps

Use data in

application

No

0

500

1000

1500

2000

8-byte 7-byte 6-byte 5-byte

R
es

p
o
n

se
 t

im
e
(m

ic
ro

 s
ec

o
n

d
)

payload size (Byte)

Normal message vs DRC protocol response

time(micro second) for short range

communication

Normal Network

DRC protocol

0

200

400

600

800

1000

1200

1400

1600

1800

8-byte 7-byte 6-byte 5-byte

R
es

p
o
n

se
 t

im
e
(m

ic
ro

 s
ec

o
n

d
)

Payload size (Byte)

Noraml message vs DRC protocol response

time(micro second) for long range

communication

Normal Network

DRC Protocol

Figure 3: DRC algorithm flowchart for Receiver node

International Journal of Computer Applications (0975 – 8887)

Volume 142 – No.13, May 2016

20

Indicates reduced response time for short distance

transmission. This figure also indicates significant difference

in the response time between normal communication and

DRC protocol. Further the figure-4 shows the range of time

reduction from 600 microseconds to 40 microseconds for

payload range of 8byte to 5byte respectively. The system

requires a finite switching time which is an additional burden

on CPU. However, as compare to the benefit in the overall

response time, this additional burden is viable.

The results shown in Table1 are encouraging for the DRC

protocol transmission, especially during the short rang

message transmission.

8. REFERENCES
[1] G. M. Martinov, A. B. Lyubimov, A. I. Bondarenko, A.

E. Sorokoumov, and I. A. Kovalev,"An Approach to

Building a Multiprotocol CNC System", ISSN 0005-

1179, Automation and Remote Control, 2015, Vol. 76,

No. 1, pp. 172–178.

[2] Robert I. Davis, Alan Burns, Reinder J. Bril, Johan J.

Lukkien," Controller Area Network (CAN)

schedulability analysis: Refuted, revisited and revised",

Real-Time System,, April 2007, Volume 35, Issue 3, pp

239-272 (2007) 35:239–272,

[3] Hanxing Chen, Jun Tian, " Research on the Controller

Area Network", 2009 International Conference on

Networking and Digital Society,, 2009 IEEE, DOI

10.1109/ICNDS.2009.142,978-0-7695-3635-

4/09,pp:251-254.

[4] Weiming Tong, Chengde Tong and Yong Liu," A Data

Engine for Controller Area Network", 2007 International

Conference on Computational Intelligence and Security,

2007, IEEE,DOI 10.1109/CIS.2007.137, 0-7695-3072-

9/07, pp: 1015-1019

[5] Mouaaz Nahas , Michael J. Pont, Michael Short,”

Reducing message-length variations in resource-

constrained embedded systems implemented using the

Controller Area Network (CAN) protocol”, Journal of

Systems Architecture 55 (2009), Elsevier, pp. 344–354,

doi:10.1016/j.sysarc.2009.03.004, 1383-7621.

[6] Mouaaz Nahas, Michael Short and Michael J. Pont, “The

impact of bit stuffing on the real-time performance of a

distributed control system”, ICC 2005, CAN in

Automation.

[7] [M. Nahas, M. Short and M. J. Pont,” Using XOR

operations to reduce variations in the transmission time

of CAN messages: A pilot study”, Proceedings of the

Second UK Embedded Forum, University of Newcastle

upon Tyne, pp. 4-17, ISBN 0-7017-0191-9, November-

2005

[8] F. C. Braescu, C. F. Caruntu, L. Ferariu, C. Lazar,”

OSEK based embedded networked controller handling

communication delays”, Second Eastern European

Regional Conference on the Engineering of Computer

Based Systems, pp. 71-77,IEEE, ISBN: 978-0-7695-

4418-2/11, 2011.

[9] Vittoria Aiello, Parnian Najafi Borazjani, Ermanno

Battista, Massimiliano Albanese, " Next-Generation

Technologies for Preventing Accidental Death of

Children Trapped in Parked Vehicles",2014 IEEE 15th

International Conference on Information Reuse and

Integration (IEEE IRI 2014), August 13-15, 2014, 978-1-

4799-5880-1/14,IEEE,pp 508-513

[10] Lu´ıs Rodrigues, M´ario Guimar˜aes, Jos´e Rufino,

"Fault-tolerant clock synchronization in CAN," 19th

IEEE Real-Time Systems Symposium (RTSS'98), ISBN:

0-8186-9212-X, 1998.

[11] K. M. Zuberi, K. G. Shin, “ Design and Implementation

of Efficient Message Scheduling for Controller Area

Network”, VOL. 49, NO. 2, IEEE transactions on

computers, ISSN: 0018-9340, FEBRUARY 2000.

[12] Thomas Nolte, Hans Hansson, and Christer Norstr¨om,”

Probabilistic Worst-Case Response-Time Analysis for

the Controller Area Network”, Proceedings of the 9th

IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS’03), 2003 IEEE, 1080-

1812/03.

[13] K.W. Tindell and A. Burns, “Guaranteeing message

latencies on Controller Area Network (CAN)”, In

Proceedings of 1st International CAN Conference, pp. 1-

11, September 1994.

[14] Yang Shunkun, Tang Dongxiao, Shi Xiaohua, " Testing

System for CAN Bus-oriented Embedded

Software",2014 IEEE/ACIS 13th International

Conference on Computer and Information Science

(ICIS), 10.1109/ICIS.2014.6912162, 978-1-4799-4860-

4/14, IEEE, June 4-6, 2014,379 - 384

IJCATM : www.ijcaonline.org

