
International Journal of Computer Applications (0975 – 8887)

Volume 142 – No.4, May 2016

16

EgyCD Visualization for Code Clones

Ali El-Matarawy
Department of Computer

Science,
Faculty of Computers and

Information,
Cairo University

Mohammad El-Ramly
Department of Computer

Science,
Faculty of Computers and

Information,
Cairo University

Reem Bahgat
Department of Computer

Science,
Faculty of Computers and

Information,
Cairo University

ABSTRACT

This research presents a new visualization for code clones

using EgyCD code clone detector which is based on

sequential pattern mining. EgyCD presents a new graph

design in which no lines has been drawn, this simplify the

graph, no need for the lines since the main objective is to ease

the manual management. EgyCD is independent in its

visualization in which no graph tools are required for

visualizing its code clones, finally supports a very nice way to

ease the manual code clone management by the user. .

Keywords

Code clones, visualization, data mining, clone class, clone

pairs, sequential pattern mining.

1. INTRODUCTION
The analysis of code clone data readily lends itself to graph-

based analysis and visualization. However, the relationship of

code clones both to themselves and other system objects

creates a tangled nest of objects and links which can be

difficult to explore [1].

For large software systems, clone detection tools usually

report a large number (thousands) of clone pairs and clone

classes. In order to help software maintainers in examining

the output of clone detection tools, several clone visualization

approaches and tools have been previously proposed. Previous

clone visualization approaches concentrate on the following

dimensions [2]

 Visualized Source Entities: Are clones shown at the code

segment level, lifted to the file level, or lifted to the

subsystem level. Higher abstractions (such as subsystems)

permit the study of large software systems since they

reduce the amount of clutter shown in the generated

visualization.

 Visualized Clone Relations: Are clones shown as clone

pairs, grouped as clone classes, or grouped as super clone

classes. By grouping clone code segments between

common files or subsystems, then software maintainers

can concentrate on suspicious (large amounts of) cloning

between two source entities instead of being

overwhelmed by many smaller clone pairs.

Kapster et al. [3] show cloning relations in boxes-and-arrows

like architectural diagrams. They visualize cloning pairs

between subsystems. Figure (1) compares two different

approaches (visualizing files using clone pairs and clone

classes). The square nodes are files; the circle nodes are clone

classes. Edges indicate cloning relationship. Both views

visualize the same cloning data. The left view shows clone

pairs, whereas the right view groups clones into clone classes.

The left view contains more crossing edges than the right

view. These edges make the visualization much harder to

view in particular for large software systems. Moreover, the

use of clone pairs in the visualization causes the loss of other

relevant information. For example, it is not clear that the

cloning relationship AB_1 is only between files A and B

(clone class 2) or if it is among files A, B, C and D (clone

class 1). Both of these problems are exaggerated for large

software systems.

Figure 1: Comparison between two approaches [3]

2. RELATED WORK
Several visualization has been developed to illustrate the

results of clone detections. In this section we present the

major ones, as they are presented in [3].

The Duplication Web: is the first view that an engineer can

use as it introduces the user to the duplication situation. It

shows all files in the system and all existing clone connections

between them. This view gives an impression of the number

of files in the system and the amount of duplication that

connects them. It shows the entire system at once in a well

defined shape that is independent of the physical organization.

It is shown in Fig. 2

Figure 2: The Duplication Web view of MFC (Microsoft

Foundation Class).

International Journal of Computer Applications (0975 – 8887)

Volume 142 – No.4, May 2016

17

The Clone Scatterplot: it isplays the same nodes and edges

as the Duplication Web but the layout takes into account the

size and duplication metrics for each file. The Clone

Scatterplot confronts the size of the files with the amount of

duplication they contain. Files of different duplication levels

can be identified by the region they are positioned in. The

edges tell us if code is shared between large and small files, or

between files of similar size. Heavily copied files can be

selected for closer inspection. The characterstics of it is in the

following:

 Nodes on the left represent small files, while the ones on

the right represent large files.

 Nodes at the top of the view represent files having little or

no duplication.

 Nodes that are not at the top of the view but are

unconnected represent files having only internal

duplication.

 Nodes close to the 45o diagonal represent files containing

a lot of duplication with respect to their size.

It is shown in Fig. 3.

Figure 3: Two examples of the Clone Scatterplot.

The Duplication Aggregation Tree Map: it views

aggregates the duplication that until now we have only seen

attached to individual files. It shows the entire system top–

down along the directory structure, annotating each directory

node with the recursively aggregated amounts of internal and

external duplication of its files and subdirectories. The view

emphasizes system parts according to their involvement in

duplication. The tree map aims to give an overview of the

ratio of internal to external duplication, aggregated from the

individual source files up to the root directory of the system.

The parts of the system which exhibit high amounts of

duplication can be identified at a glance from the top level.

Relative comparison of structures in the hierarchy is made

possible. The view has a gestalt property, i.e., it can give

useful information immediately. It is shown in Fig. 4.

Figure 7.4 The tree map of the APACHE system.

The Clone Class Family Enumeration: it views reduces the

redundancy of the duplication connections that has been

presented in all the previous views. The clones are shown in a

view of concise nodes and edge. The layout uses the LCC

(Lines of Copied Code) and the LOC (Lines of Code) metrics

to place clone class families and source files, respectively, on

the horizontal axis. The intuition “the farther to the right the

bigger” thus can be used to mentally classify both entity types

presented in the view. The edges connect the clone class

families in the upper half of the view with the source files on

the lower half. This view presents the clone class families to

the user in a way that eases investigation of individual

instances of duplication. It characterizes the families by the

criterion of how many source files they comprise and how

much code they contain. The user can start on a clone class

family node and see which source files are participating. He

can also start with a source file node and see in how many

clone class families the file participates. To make the view

fully useful, lower level duplication entities, i.e., clone classes

and finally clones must be made available to the user via the

nodes in this view. It is shown in Fig. 5.

Figure 5: The Clone Class Family Enumeration

3. VISUALIZATION GRAPH TOOLS
Most code clones detectors use one of two graph tools to

present the code clones namely:

3.1 AJDT Visualizer
The AJDT Visualizer is an Eclipse plugin that is part of the

AspectJ Development Tools project. The developers of the

Visualizer opened the plugin for adaptation by providing

several extension points to allow other types of information to

utilize its visualization features [4].

3.2 GUESS system
The GUESS system provides the users with a mechanism to

interactively explore graph structures both through direct

manipulation as well as a domain-specific language [1].

Figure 6: A screenshot of the GUESS system [1].

When we decided to visualize code clones as graphs in

EgyCD [5,6] we wanted to keep the easy way in code clone

management for the user and if we switched to an external-

graph tool we may not achieve the target of maintaining the

International Journal of Computer Applications (0975 – 8887)

Volume 142 – No.4, May 2016

18

source code by the developer so we decided to build the graph

in EgyCD instead of using of a graph tool.

4. EGYCD VISUALIZATION
Most visualizations tools abstract and display cloning

information at the subsystem level but with different

emphases. Most of them participate in using lines or edges to

represent relationships between code clones and files or

folders. In our opinion too many lines to be displayed will

make the graph too difficult to understand. Therefore we

decided to visualize code clones as shown in Appendix (B)

Screenshot (B.7), in which all code clone classes are listed in

a master form and all of its locations data are detailed in sub-

form beneath it. The user can double click any row in the

detailed form and the file contains the code clone will be

opened. In this way, an easy manual management can be done

by the developers of the source code to maintain it. This was

our focus but at the same time we lost the most important

feature of the graph which is showing everything in one sheet,

so it means knowing a lot of information in a second just with

one look to the graph. This feature comes from the graph's

nature either it is for code clones or for something else such as

line graph for cities, building projects,…,etc.

Graph views achieve the goal of data reduction on different

levels. We are able to display even very large systems on

restricted screen space. Many of the views have a gestalt

property, i.e., they provide overview information at a glance.

The reduction of the cardinality of the clone sets, however, is

sometimes not enough, resulting in cluttered displays which

are hard to read. We must further support readability with

interactive enhancements of the views, e.g., with the

highlighting of connected elements on mouse over, mouse

click or double click.

By using simple and heuristic layout mechanisms, we

provided a fixed arrangement of the nodes representing them

as code clone objects of the code clone classes as shown in

Fig. 7. This is an advantage since there is no need for the user

to rearrange the nodes to get a better view, also no need for

the lines since the main objective is to ease the manual

management; the user can click any node to know all

information about the class of the node and if the user wants

to start the manual maintenance to his source code he can

click the node then EgyCD will open it automatically

4.1 EgyCD Graph Design
We sort all code clones classes on their repetition in

descending order then we draw them in a virtual rectangle, in

which each group of adjacent nodes represent one class and

each node in this group represent a clone class in a file

containing this clone class. To differentiate among these clone

classes we draw each clone class with a specific color. Instead

of having one big virtual rectangle containing all data, we

divide it to smaller virtual rectangles, this will improve only

the readability of the graph as shown in Fig. 7.8.

We called each virtual rectangle a code clone item in which it

contains different instances (objects) of code clones classes.

Each code clone item has a fixed width with a primary fixed

height and it can be increased for adding extra nodes of a

class, so we don’t allow objects of the code clone class to be

divided in two virtual rectangles.

In Fig 6, the first code clone item contains the code clone

class with high counts since as being mentioned earlier, we

sort them in descending orders and also this can be noticed in

the last column in which all code classes almost has a

repetition count equal 2.

Code Clone Item

Figure 7: EgyCD graph representation

4.2 EgyCD Graphical Interface
When the user clicks on any node, a full data (code clone

folder location, the file it contains, the first line of the code

clone, and the code clone size) is displayed as shown in Fig.

8. (the displayed clone data displayed in that figure can be

obtained by clicking any of the nodes under the shadow

rectangle of second clone item in the first row) and when the

user double clicks the node the corresponding file of that node

is opened automatically for maintenance or management

manual process by the developer of the source code.

Figure 7.7: EgyCD Data representaion

4.3 EgyCD Graph features
Generally the visualization of code clones has three features,

the first feature shows the locations of the code clones, the

second feature shows which code clones are important than

other code clones, and the third feature is the way of

representations. EgyCD graph supports all of these features in

simple and interactive way for source code manual

management.

EgyCD grah has the following features:

 EgyCD supports all features of code clones visualization.

 EgyCD presents a new way of representation in which it

has no edges.

 EgyCD supports class representation, it is so clear from

Fig. (7.1) that class representation is more clearer than

clone pair representation.

 EgyCD is independent in its visualization in which no

graph tools are required for visualizing its code clones.

 EgyCD supports a very nice way to ease the manual code

clone management by the user.

International Journal of Computer Applications (0975 – 8887)

Volume 142 – No.4, May 2016

19

5. CONCLUSIONS
In this paper, we presented new graph design for visualizing

code clones in a simple and powerful features. EgyCD

visualizations has n lines and hence no time is needed to

understand all the information it presents. EgyCD supports the

class visualization. EgyCD is independent in its visualization

in which no graph tools are required for visualizing its code

clones, also it supports a very nice way to ease the manual

code clone management by the user.

6. REFERENCES
[1] E. Adar and M. Kim, SoftGUESS: "Visualization and

Exploration of Code Clones in Context", University of

Washington, Computer Science and Engineering,

Software Engineering, 2007. ICSE 2007. 29th

International Conference.

[2] Z. Ming Jiang, "Visualizing and Understanding Code

Duplication in Large Software Systems", A thesis

presented to the University of Waterloo in fulfillment of

the thesis requirement for the degree of Master of

Mathematics in Computer Science Waterloo, Ontario,

Canada, 2006.

[3] C. J. Kapser and M. W. Godfrey. "Supporting the

Analysis of Clones in Software Systems: A Case Study",

Journal of Software Maintenance and Evolution:

Research and Practice, 18(2), 2006.P. Clough

,"Plagiarism in natural and programming languages: an

overview of current tools and technologies", July 2000,

Department of Computer Science, University of

Sheffield.

[4] R. Tairas, j. Gray and I. Baxter, , “Visualization of Clone

Detection Results”, In Proceeding eclipse '06

Proceedings of the 2006 OOPSLA workshop on eclipse

technology eXchange , 2006, Pages 50 – 54.

[5] A. Matarawy, M. El-Ramly and R. Bahgat. “ Plagiarism

Detection using Sequential Pattern Mining, International

Journal of Applied Information Systems (IJAIS) – ISSN :

2249-0868 Foundation of Computer Science FCS, New

York, USA Volume 5–No.2, January 2013 –

www.ijais.or , pp 24-29.

[6] A. Matarawy, M. El-Ramly and R. Bahgat. “ Plagiarism

Detection using Sequential Pattern Mining, International

Journal of Applied Information Systems (IJAIS) – ISSN :

2249-0868 Foundation of Computer Science FCS, New

York, USA Volume 5–No.2, January 2013 –

www.ijais.or , pp 24-29.

[7] A. Matarawy, M. El-Ramly and R. Bahgat. “Parallel and

Distributed Code Clone Detection using Sequential

Pattern Mining”, International Journal of Computer

Applications (0975 – 8887) Volume 62– No.10, January

2013, pp 25-31.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4222553
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4222553

