
International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.10, June 2016

9

Towards an Evaluation Framework for Multilingual

Supported Data Modeling Patterns

Gholamali Nejad Hajali Irani
Computer Engineering Dep.,

University of Bonab
Velayat Avenue, Bonab 5551761167,

East Azerbaijan, Iran

Mohammadreza Rostamzadeh
Lachin Systems Company

Rajayi Avenue, Bonab 5551867311,
East Azerbaijan, Iran

ABSTRACT

Nowadays, Internationalization is one of the most important

aspects of Information Systems. Supporting multilingual

features as a part of internationalization process, is being a

competition in all Information Systems. There are many data

modeling patterns to support multilingual features in

development process of Information Systems with many

quality attributes to evaluate them.

In this article, an evaluation framework has been designed for

all multilingual support data modeling patterns and their

quality attributes.

To obtain this aim, all data modeling patterns to support

multilingual features have been collected. Then, all quality

attributes related to patterns are collected and categorized as

evaluation parameters. Afterwards, all quality attributes for

each pattern been investigated. Finally, an evaluation

framework has been tried to provide for all multilingual

patterns and their quality attributes.

General Terms

Software Engineering, Data Modeling Patterns.

Keywords

Internationalization, Multilingual Information Systems, Data

Modeling, Quality Attributes.

1. INTRODUCTION
Internationalization (i18n) is the tasks and activities to provide

services so that systems can easily be adapted to any local

languages and cultures, that activities called localization [1].

In computing, internationalization and localization are means

of adapting computer software to different languages, regional

differences and technical requirements of a target market

(locale). [2].

Multilingual is part of internationalization process.

Information Systems (IS) should support multilingual feature

in their Information Systems in order to be included in world-

wide competition.

Multilingual is explained divided into two categories. Firstly,

Software or IS should have a multilingual User Interface (UI)

and its UI should be able to seem multilingual. Secondly, IS

should store the data of IS in different languages. Therefore,

multilingual feature affect all parts of IS development process.

The second category is the scope of this article.

Data Modeling is one of the most important steps of Software

Development Life Cycle (SDLC) [3]. In this step, the

structure of data for IS will be analyzed and designed by

software analysts and designers. Data modeling patterns are

common data modeling structures that occur in many data

models [4]. To support multilingual features in any IS, the

data model of IS should support multilingual features.

There are many data modeling patterns to support multilingual

features in ISs. Architectures and designers of ISs should be

aware of those features to design a multilingual IS. Also, they

should know the weaknesses and strengths of each pattern. In

order to measure these weaknesses and strengths,

architectures should evaluate the patterns. Evaluation

parameters of patterns are called quality attributes [5].

Therefore, multilingual patterns are measured based on their

quality attributes.

In this article, the beginning steps of providing an evaluation

framework to compare and evaluate all multilingual data

modeling patterns have been presented as follows:

1. Gathering and categorizing all quality attributes as

evaluation parameters related to multilingual

support data modeling patterns and also their

investigation and quantification.

2. Gathering all multilingual data modeling patterns

and investigating and measuring the value of each

quality attribute for each pattern.

3. Providing an evaluation framework for all patterns.

2. EVALUATION PARAMETERS
In software engineering, there are many quality attributes to

compare and evaluate the strengths and weaknesses of

patterns can be named as evaluation parameters. In this

section, some important quality attributes of multilingual

support data modeling patterns are investigated. According to

the concept of data modeling, these quality attributes are

categorized in two major sections. First category of quality

attributes are related to Software Architecture named SQ. The

second one quality attributes related to Database Management

Systems named DQ. In the following sections, each quality

attribute is described.

2.1 SQ1: Extendibility for adding new

languages to the system at development-

time
This quality attribute is related to the complexity of adding

new language to the system at development-time. The

complexity of adding this language can be a number between

0 and 100.

2.2 SQ2: Extendibility for adding new

language to entire system at runtime
Same as previous, this quality is related to the complexity of

adding new language to the system at running time. The

complexity of this action can be a number between 0 and 100.

http://searchcio.techtarget.com/definition/localization

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.10, June 2016

10

If a pattern does not support this quality attribute, the number

is set to 0. In the best case, a new language can be

automatically added in runtime, which set the number to 100.

2.3 SQ3: Modifiability for deleting an

existing language from entire system at

develop time
This quality attribute is related to the complexity of deleting

an existing language from the entire system at development

time. Again, it can be a number between 0 and 100. This

action should rollback the state of system to a stable state and

all performance issues should be eliminated from the system.

2.4 SQ4: Extendibility for adding new

language to entire system at runtime
This feature is the same as previous one, but all requirements

should be executable at running time.

2.5 SQ5, SQ6, SQ7 and SQ8
All these quality attributes are similar to SQ1 to SQ4, but they

are related to specific field of a table; again, their values can

be a number between 0 and 100.

2.6 SQ9: Usability for just default

language
This quality attribute is related to the usability of a default

language in a multilingual circumstance. Other words, by

installing and using multilingual systems, the structure of

source codes and other programming issues for using only the

default language should not be affected. In the best case,

adding the multilingual patterns do not affect any code in the

system for the default language and the value of pattern would

be 100. The ratio of changing the code in comparison with

changing other patterns, determine the value of this pattern.

2.7 SQ10: Modularity of multilingual

pattern
The modularity of adding multilingual patterns to an existing

system is the target of this quality attribute. The amount of

modifications that are necessary to add a multilingual pattern

to the existing system, is a quantified value. Ideally,

multilingual pattern can be added to the system without any

changes. So, the value would be 100. The amount of changes

in the structure of system in comparison with other patterns

changes, determine the value of this quality attribute.

2.8 SQ11: Encapsulation from developers
This quality is related to hiding pattern implementation and

deployment from the programmers. In the worst case, all

programmers should know about the issues of adding

multilingual patterns to their codes, so the value would be 0.

In the best case, the programmers add only one line of code in

order to support multilingual feature in the code, which set the

value to 100.

2.9 SQ12: Data Access Frameworks

support
In modern programming world, there are many data access

frameworks that help the developers of systems write agile

codes. For example, Java Framework has JPA, Hibernate,

EclipseLink, JOOQ, and .NET Framework has NHibernate

and Entity Framework. These frameworks hide the details of

SQL implementation from the view of programmers. Some

multilingual patterns have been deployed in very detailed

SQL implementation. Therefore, data access frameworks

cannot support them. In this case, the pattern or the data

access frameworks should be avoid. If the data access

framework supports the multilingual pattern, the value of

pattern would be set to 100, otherwise set to 0.

2.10 SQ13: Complexity of the pattern
The complexity of implementation and development of the

pattern and then using it, is the target of this quality attribute.

If implementing the pattern is easy, the value of this pattern is

set to 100. The complexity of implementation and deployment

decreases the above-mentioned value.

2.11 DQ1: DBMS support
Some multilingual patterns are not supported by some

DBMSs. For example, some patterns use the Object

Relational aspects; therefore, relational databases do not

support them. The value of this pattern is set to 0 for the case

without DBMS support and it is set to 100 for the case with

DBMS support.

2.12 DQ2: Nullification and sparse tables
Some multilingual patterns are causing nullifications and

spare tables in the database due to their architecture. This

quality attribute shows the effect of quality of nullifications in

the system and the value can be a number between 0 and 100.

In the best case, if the pattern does not create or force

nullification or sparse tables, the value is set to 100. The

amount of nullifications and sparse tables decreases this

value.

2.13 DQ3: Redundancy
Some multilingual patterns force developers to write the same

data in different parts of the database which is called

redundancy. The amount of pattern redundancy is the value of

this quality attribute. In the best case, if the pattern does not

cause any redundancy, the value is set to 100.

2.14 DQ4: Size of one table
Some multilingual patterns force developers to write many

data values in one table. These patterns have to challenge with

issues such as the ability of cashing, maintainability, backup

and transactions. If the pattern does not create a big data table,

the value of this pattern is 100, otherwise it is 0.

2.15 DQ5: Number of Tables
Some of the multilingual patterns increase the number of

tables in the system. In the worst case, some of them double

the number of tables. In this case, the value of pattern is set to

0. In the best case, with adding at most one table, the value is

set to 100.

2.16 DQ6: Performance of Querying
Some multilingual patterns decrease the performance of

querying in the system. To quantifying this patterns, the

performance of system with and without applying the pattern

should be measured. This pattern is generally related to four

types of CRUD querying (Create, Retrieve, Update and

Delete). In the best case, the pattern does not affect the

performance; therefore, the value would be set to 100. The

amount of performance reduction for each query, decreases

the value. The value of this pattern can be a number between

0 and 100.

2.17 DQ7: Easy Querying
The complexity of queries are the matter with applying the

multilingual patterns. For example, if applying the pattern

causes using additional joins to retrieve data from database,

the complexity will be increased. The value of this pattern can

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.10, June 2016

11

be a number between 0 and 100. In the base case, without

adding any complexity to system, the value is set to 100.

2.18 DQ8: Default Language querying

performance
In most multilingual systems, the number of default language

retrievals is too many. So, in the best case, multilingual

pattern should establish a mechanism that the performance of

retrieving the default language is not affected. In that case, the

value of this pattern is set to 100. The amount of performance

reduction for default language, lowers the value of this

pattern.

2.19 DQ9: Two Language querying

performance
Similar to the previous case, in most multilingual systems, the

system only works with two languages. So, multilingual

pattern could have a different mechanism to retrieve two base

languages and the performance would not be affected in this

case.

2.20 DQ10: Backup and Restore just one

language data
To support this quality attribute, the multilingual pattern

should have a structure that developers and end-users can

easily backup and restore the data of one language. In that

case, the value of pattern is set to 100, otherwise 0.

2.21 DQ11: Normalization
Normalization is one of the important principles of data

modeling and database design [6]. Some multilingual patterns

violate this principle. So, if developers use that pattern in a

non-professional manner, this may cause a global problem in

the system. For example, cascading update or delete would be

violated if the database design was not normal. Therefore,

using the patterns require a professional team of database

designers and programmers. The value of this pattern is a

number between 0 and 100. In the best case (without violating

normalization), the value of this pattern is set to 100.

2.22 Data Modeling Patterns to support

Multilingual
In the following sections, all existing data modeling patterns

have been explained and their main weaknesses and

strengthens have been described. As the detailed reasons of

assigning a number to each pattern are too many, so just for

only the first pattern has been described. Notably, P5 is a new

data modeling pattern that is given in this article.

2.23 P1: New column for each language for

each field in the same table
This pattern is the simplest data modeling pattern for

multilingual support. It creates an additional column for each

language and for each field in a table if the field needs its

translation in other language.

Suppose that a system has a table named News with four

columns (fields): id, title, abstraction and body. The system

works with the default language. Other languages have been

asked to be added to system such as France (fr). So, each field

in the News table that needs to be translated, should be

duplicated. Therefore, the number of fields of News raise to

seven. The final filed names of News are: id, title, title_fr,

abstraction, abstraction_fr, body, and body_fr. For another

language in the same News table, the number of translation

fields should be duplicated again. In the following parts of the

article, the above-mentioned quality attributes have been

described and measured for P1.

(SQ1=60): To add a new language to the whole system, the

structure of the table should be changed and a new translation

field should be added for each field. In small systems it is

easy. Like adding a new language, deleting a language from

system or from one field in development time would be the

same; so the values are: SQ3=60, SQ5=60, SQ7=60. (SQ2=0,

SQ4=0, SQ6=0, SQ8=0): The new language cannot be added

or deleted in running time. (SQ9=100): By adding new

languages, the structure of source codes for the default

language will not change. (SQ10=0): P1 cannot be added to a

system without changes; so, modularity is zero. (SQ11=0): By

adding a language to system, all source codes and as the same

way, all programmers should be aware of the mechanism and

source code will be hardly affected by the pattern.

(SQ12=100): All data access frameworks support P1.

(SQ13=100): P1 is the simplest patterns. (DQ1=100): All

DBMSs support P1. (DQ2=70): Initially, there are columns

for all used languages in the system. But some languages of

the system may not be filled. (DQ3=100): There is no

redundancy in P1. (DQ4=100): There is no giant table in P1.

(DQ5=100): There is no increment in number of tables in P1.

(DQ6=100): Because of reading from the same table without

any joins, the performance of querying is not effected.

(DQ7=90): There is no joins in P1, but the programmer

should know about the name of fields. (DQ8=100): There is

no changes in default language performance. (DQ9=100): All

languages of a tables are in the same table, so querying two

languages will perform in maximum performance. (DQ10=0):

All languages of a tables are in the same table, so backup and

restore cannot perform easily or automatically. (DQ11=60): In

theory, all tables in multilingual mode in P1 are normal, but in

practice, there is no language table that keep all languages

with id and then use the id in other table for multilingual

support.

2.24 P2: New row for each language in the

same table with Language Id
This pattern is similar to P1, but instead of duplicating the

content in columns, it duplicates in rows with a language id.

For new table with four columns: Id, title, abstraction and

body, new field named LangId should be added. So each row

holds the data for specific language. To observe

normalization, the id of table and LangId should be a primary

key together. This pattern attempts to improve the weaknesses

of P1 and make a new pattern that new languages can be

automatically added even in runtime. But, in this case, some

other side effects and weaknesses will be created. For

example, if the data of a raw is duplicated, the whole date of

the row will be duplicated as well. Some columns may not be

multilingual. Therefore, if the programmer duplicates the data,

redundancy will increase and if she does not duplicate the

data, nullifications will be created.

2.25 P3: Single translation table for whole

system
In this pattern, translation of all languages are stored in a

single translation table. It is more suited for dynamic websites

which have a large number of languages and intend to add a

new language in the future at runtime. It is so modular and

can be added to any system without changes in the system

structure. One translation table should have relationship to all

tables of the system to know about the reference field to be

translated, which is impossible in DBMS, so these

relationships should be checked in source codes. So, it

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.10, June 2016

12

violates normalization and some data access frameworks do

not support that. On the other hand all data stored in one table.

This action affects all parts of database such as performance,

maintainability, cash ability, etc. In this pattern, default

language can be stored in main table and only the translation

is stored in one table.

2.26 P4: One translation table for each

table
This pattern is a variation of P3 and it seems to be easier to

maintain and work with. An additional table is created for

each table that stores information that may need translation.

The original table stores only language insensitive data and

the new on stores all translated data. If the original table stores

all fields of table in default language, the performance and

maintenance of the default language will be preserved.

Translation table has a language Id, original table Id, and all

fields of the original table that needs to be translated. In this

pattern, retrieving other languages needs only one join in the

database; therefore the performance slightly decreases.

In order to support the performance of two languages, the

combination of P4 and P2 could be used. To do that, the

default language together with the secondary language are

stored in the original table and other languages are stored in

translation table. In this case, system will have some

redundancy or nullification. Instead, the performance of two

language systems supports powerfully.

2.27 P5: Array Type for multilingual field

in the same table for the multilingual

field
For pages

In Object Oriented DBMSs and Object Relational DBMSs,

the array type exists [7]. For example, the type of a filed can

be set as array of String (String[]). So, if any field of a table

needs to have multilingual support, the data type of that field

can be set as array. In this case, the first index of the array of

all multilingual fields are default language, and the second

index is the second language, etc.

The most important weakness of this pattern is that only

Object Relational DBMSs such as PostgreSQL and Oracle or

Object Oriented DBMSs such as ObjectDB support this

pattern. Apart from this disadvantage, this pattern is so

extendible, modifiable, and powerful. There is no need for

joins in retrieving data; and the performance of querying is

not effected.

2.28 P6: Use DBMS Locale System
Some DBMSs have Locale System and support multi-locale

databases. Before each query, programmers should set desired

locale and then the result of query will be ready in that locale.

DBMS hides the implementation of multilingual support and

programmers only set the locale and get the date.

Encapsulation and ease of use are the strengths of this pattern.

On the other hand, Locale System does not support all

DBMSs and in many DBMSs it will not work properly for all

languages. This pattern is a black box and DBMS hides the

details of implementation, so in order to use this pattern, all

performance and maintainability and other database issues

should be checked for each DBMS.

2.29 P7: Using a complete translation

system as a middleware
The idea used in this pattern varies from other patterns.

Instead of saving each data translation for each field in tables,

all data of all languages are saved in a translation system. This

system can be an Expert System that use some artificial

intelligence techniques to save and retrieve data for all

languages. For example, GLUE!-PS [8] architecture is one of

them. This System can be a middleware between any system

and its database and translate each data to desired language.

Obviously, implementing this type of systems are so complex,

but it can be developed as a powerful middleware or a plugin

on DBMSs.

3. THE PRIMITIVE EVALUATION

FRAMEWORK
In Table 1 and Table 2, the results of evaluating pattern by

evaluation parameters are given. All patterns and their values

for quality attributes are presented. Note that some quality

attributes of some patterns cannot be measured. So, the value

marked as ‘?’.

Table 1. Software Engineering related Quality Attributes

 SQ1 SQ2 SQ3 SQ4 SQ5 SQ6 SQ7 SQ8 SQ9 SQ10 SQ11 SQ12 SQ13

P1 60 0 60 0 60 0 60 0 100 0 0 100 100

P2 100 100 100 100 100 100 100 100 100 100 30 100 95

P3 100 100 100 100 100 100 100 100 100 100 30 30 95

P4 100 100 100 100 100 100 100 100 100 100 90 100 95

P5 100 100 100 100 100 100 100 100 100 100 100 100 100

P6 100 100 100 100 100 100 100 100 100 100 100 100 100

P7 100 100 100 100 100 100 100 100 100 100 100 ? ?

Table 2. Database Systems related Quality Attributes

 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8 DQ9 DQ10 DQ11

P1 100 70 100 100 100 100 90 100 100 0 60

P2 100 70 0 100 100 85 90 90 90 0 60

P3 100 100 100 0 100 50 50 100 50 100 0

P4 100 100 100 100 0 85 85 100 50 100 100

P5 0 100 100 100 100 100 100 100 100 0 100

P6 0 ? 100 ? 100 ? 100 ? ? ? ?

P7 ? 100 100 100 100 ? 100 ? ? 100 ?

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.10, June 2016

13

4. CONCLUSION
Multilingual support is the main feature of Information

Systems. There are many patterns with many related quality

attributes to support multilingualism in databases. In this

article, all existing pattern with all quality attributes have been

categorized and explained. So, Information System developers

and architects would be able to choose one of the provided

patterns based on their quality attributes.

As future work, the quality attributes of Information Systems

can be added. For example, the size of system, number of

packages in the system and specially type of the system, such

as Accounting System, Social System, etc. These parameters

affect choosing a pattern. On the other hand, this article

approaches to a building a framework. In order to complete

the framework, a selection mechanism should be defined and

added to this work, so that developers and architects can

select appropriate pattern based on a mechanism.

5. ACKNOWLEDGMENTS
Special thanks to Dr. Rahim Dehkharghani for his adorable

helps.

6. REFERENCES
[1] http://whatis.techtarget.com/definition/internationalizatio

n-I18N.

[2] Patrick A.V. Hall, Martyn A. Ould, eds. (1996). Software

Without Frontiers: A multi-platform, multi-cultural,

multi-nation approach. With contributions and leadership

by Ray Hudson, Costas Spyropoulos, Timo Honkela et

al. Wiley. ISBN 9780471969747.

[3] Michael R. McCaleb (1999). "A Conceptual Data Model

of Datum Systems". National Institute of Standards and

Technology. August 1999.

[4] "The Data Model Resource Book: Universal Patterns for

Data Modeling" Len Silverstone & Paul Agnew (2008).

[5] Chen, Lianping (2013). "Characterizing Architecturally

Significant Requirements". IEEE Software 30 (2): 38–45.

[6] Codd, E. F. (June 1970). "A Relational Model of Data for

Large Shared Data Banks". Communications of the ACM

13 (6): 377–387.

[7] S. Sumathi, S. Esakkirajan, Fundamentals of Relational

Database Management Systems, Springer, 2007.

[8] L. P. Prieto, J. I. Asensio-Pérez, Y. Dimitriadis, E.

Gómez-Sánchez, J. A. Muñoz-Cristóbal, GLUE!-PS: A

Multilingual Architecture and Data Model to Deploy

TEL Designs to Multiple Learning Environments, Book

Title: Towards Ubiquitous Learning, pp 285-298 ,

Springer Berlin Heidelberg, 2011.

IJCATM : www.ijcaonline.org

http://whatis.techtarget.com/definition/internationalization-I18N
http://whatis.techtarget.com/definition/internationalization-I18N

