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ABSTRACT 
In this paper, three neural control strategies are addressed to a 

class of single input-single output (SISO) discrete-time 

nonlinear systems affected by parametric variations. 

According to the control scheme, in a first step, a direct neural 

model (DNM) is developed to emulate the behavior of the 

system, then an inverse neural model (INM) is synthesized 

using specialized learning technique and cascaded to the 

system as a controller. The sliding mode backpropagation 

algorithm (SM-BP), which presents in a previous study 

robustness and high speed learning, is adopted for the training 

of the neural models. However, in the presence of strong 

parametric variations, the synthesized (INM) shows 

limitations to present satisfactory tracking performances. In 

fact, in order to improve the control results, two neural control 

strategies such as hybrid control and neuro-sliding mode 

control are proposed in this work.   A simulation example is 

treated to show the effectiveness of the proposed control 

strategies 

Keywords 
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1. INTRODUCTION 
In practice, a large number of systems are strongly nonlinear 

and uncertain. Thus, in recent years, several studies dealing 

with modeling and control of uncertain nonlinear systems 

have been developed [1-2-3]. The first step of the control of 

an uncertain nonlinear system is to find a mathematical model 

able to reproduce the dynamic of this system with a required 

accuracy. However, conventional modeling methods have 

shown limitations to approximate correctly nonlinear systems 

affected by parametric uncertainties. In fact, the last decade 

has witnessed an ever increasing research in Non conventional 

modeling methods as fuzzy system [4-5] and neural networks 

[6] since they have been considered as positional solutions to 

overcome these difficulties of modeling owing to their 

universal approximation property. Topalov and kaynak 

presented in [7] a robust neural identification of robotic 

manipulators using learning algorithm based on sliding mode 

control technique. In [8], a problem of identification and 

control of uncertain nonlinear system was investigated based 

on fuzzy neural networks. Reference [9] proposed an adaptive 

robust control based on neural network approximation for a 

class of uncertain strict-feedback discrete-time nonlinear 

systems. 

Moreover, control techniques using classical controllers 

present performance indexes degradation in case of uncertain 

nonlinear system. Indeed, it is important to develop effective 

robust control techniques [10]-[13] to guarantee stability, 

robustness and satisfactory tracking performances. In many 

studies, neural networks have been proven useful and 

effective for controlling a wide class of uncertain nonlinear 

system. In fact, Tellez et al, proposed in [14] a neural inverse 

optimal controller to achieve stabilization for discrete time 

uncertain nonlinear systems. In [15] a new approach for the 

calibration and the control of spark ignition engines using a 

combination of neural networks and sliding mode control 

technique was presented.  Internal model control (IMC) is also 

considered as a robust control technique. Indeed, Alzohairy 

proposed in [16] a neural internal model control approach for 

the tracking of unknown nonaffine nonlinear discrete time 

systems subject to external disturbances. 

This paper suggests robust neural control strategies for a class 

of single input-single output (SISO) discrete-time uncertain 

nonlinear systems. Indeed, in a first step, a direct neural 

model (DNM) is elaborated to reproduce the dynamic of the 

system, then, in a second step, an inverse neural model (INM) 

is developed. After satisfactory training, the synthesized 

(INM) is applied as a controller for the uncertain nonlinear 

system. The most popular algorithm for the training of 

feedforward neural network (FNN) is backpropagation (BP) 

algorithm [17]. However, this training method is not 

completely robust face to disturbance and parameter 

variations. The sliding mode backpropagation (SM-BP) [18]-

[20] has been adopted in a specialized learning technique of 

the (INM).  The training of both (DNM) and (INM) is 

accomplished through this algorithm which has been proven 

as the best configuration in previous study [19]. In order to 

improve the robustness and the tracking performance of the 

above neural control strategy, in the presence of strong 

parametric variations, two control strategies are proposed in 

this work such as: hybrid control and neuro-sliding mode 

control. Thus, a proportional-integral controller (PI) and a 

second order neuro-sliding mode corrective controller are 

added to operate with the synthesized (INM) for the case of 

the hybrid control and the neuro-sliding mode control 

respectively. The rest of paper is organized as follows. 

Section 2 introduces problem statement. Neural modeling is 

presented in section 3. In section 4, the neural control 

strategies are described in order to develop a robust neural 

controller for the discrete-time nonlinear affected by small 

and strong parametric uncertainties. A simulation example is 

treated in section 5 to show the effectiveness of the proposed 

control strategies. Finally, in section 6 conclusions are given. 

2. PROBLEM STATEMENT 
Consider the SISO uncertain nonlinear system described by 

the following equation:  

( 1) ( ),..., ( 1), ( ),..., ( 1),y k y k y k n u k u k m p            (1) 
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y and u  are, respectively, the output and the input of the 

system, n  is the order of 
 y k

, m  is the order of
 u k

, F is 

an unknown nonlinear function to be estimated by a neural 

network and p is an uncertain parameters vector.  In this 

work, an additive uncertainty is considered. 

0p p p  
                     (2) 

0p
represents the nominal parameters and

p
is uncertain 

vector affecting the system. 

3. NEURAL MODELLING: DNM 
In order to reproduce the dynamic of system (1) a DNM is 

used. Indeed, it estimates the output of the system through old 

data of its inputs and outputs. Two approaches often discussed 

in the literature are the series parallel model and the parallel 

one [6]. In this work, we are interested in series parallel 

model. 

The block diagram of the DNM training process is presented 

by Fig.1: 

 

Fig. 1: DNM training process 

The output of the DNM is given by the following equation: 

ˆ( 1) ( ),...., ( 1), ( ),....
m

y k F y k y k n u k     

, ( 1),u k m p                                     (3)    

my
and F̂ denote respectively the output of the DNM and the 

estimate of F . 

The weights of the DNM are adjusted to minimize the cost 

function defined by: 

21

2

mJ e   
      (4) 

 1 ( 1)m

m
e y k y k   

is the error between the output of the 

system 
 1y k 

and the one of the DNM 
( 1)

m
y k 

. 

The learning algorithm adopted is this work is SM-BP 

algorithm which combines gradient descent method and 

sliding mode theory [18-19-20]. In fact, the SM-BP equations 

are presented by the following equations.  

For the node j  from the output layer, sliding surface is 

defined as [21]: 

2 0 1
( ) ( ) . ( ) 1m m m

j j j
S k X k C X k With j  

 (5) 

The index  m  refers to DNM’s parameters, j  is the output 

node and  0 0C 
 

       
'

1
.m m m

j m j
X k y k y k f V k           (6) 

     2 1 1
1m m m

j j j
X k X k X k  

    (7) 

Where 

'mf denotes the derivative of the output activation 

function, 

m

j
V

is the global input of the output node j . 

Let the sliding surface for each node of the hidden layer be 

such as:  

     2 0 1
. 1,2 ,m m m m

Hh Hh H Hh c
S k X k C X k h N   

 (8) 

Where h  is the hidden node, 0
0

H
C 

and:  

'

1 1
( ) ( ). ( ). ( )m m m m m

Hh j jh H h
X k X k W k f R k                              (9) 

     2 1 1
1m m m

Hh Hh Hh
X k X k X k  

                       (10) 

m

jh
W

represents the weight between the output node j and the 

hidden node h , 

'm

H
f

denotes the derivative of the hidden 

activation function, 
m

h
R

is the global input of the hidden node 

h and 
m

c
N

 represents the number of neurons in the hidden 

layer. 

Thus, the weights update equations based on SM-BP are given 

by: 

       1
.sgn . .m m m m

jh m j j Hh
W k S k X k Y k                 (11) 

       1
.sgn . .m m m m

hi m Hh Hh i
Z k S k X k T k                 (12)             

With: 1,..,( 1)i n m        

Where 
m

Hh
Y

 is the output of the hidden node
h

, 
m

i
T

 is the 

input of the input node
i

,
m

hi
Z

  represents the weight between 

the hidden node h and the input node i , 
0

m
 

and 
0

m
 

. 

According to Utkin [21], the condition for existence of sliding 

mode and system stability is defined by the following 

equation: 

0
ds

S
dt


                     (13) 

For discrete time, Sarpturk et al. [22] defined the equation 

( ) ( 1)S k S k 
 instead of equation (13) as the necessary 

and sufficient condition to guarantee the sliding manifold. The 

computing of the limits of m


 and m


  is presented in       

[18-19]. 

4. NEURAL CONTROL 
In this section, the design of the neural controller for uncertain 

nonlinear system through different control strategies is 

presented. 

me

 

 



 ( 1)
m

y k 

 

( 1)y k 

 

( )u k

 
Syste

m 

DN
M 

Learning 
algorithm 

iZ 
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4.1  Inverse Neural Model Controller 
The INM is trained to provide a control action that allows the 

behavior of the uncertain system to be as close as possible to 

the desired one. The specialized learning technique shown in 

Fig.2 is considered in this work for training the INM [23]. 

Thus, based on the DNM presented in section 3, which gives 

good representation of the system m
y y

 after satisfactory 

training, the INM is trained.  

 
Fig. 2 : Specialized method for INM training 

The cost function to be minimized in the training step is 

expressed as follows: 

21

2
c c

J e   
                                                                         (14)  

 1 ( 1)c de y k y k   
is the error between the output of the 

DNM ( 1)y k  and the desired one ( 1)dy k  . 

Based on the SM-BP algorithm, updating rules for adjusting 

the weights of the INM are expressed by the following 

equations: 

Let’s the sliding surface for the node 
j

 from the output layer 

be defined as:  

     2 1 1
.c c c

j j j
S k X k C X k 

                                          (15) 

Where j is the output node, 1
0C 

 

         
'

1
[ 1 1 ]. . [ ]c d m c c

j h j
X k y k y k k f V k   

             (16) 

With  
       

' '

1

1

1

( ) . . .

m

cN

m m m m m m m

h j jh Hh h h

h

k f V k W k f R k Z k




 


    
  

     2 1 1
1c c c

j j j
X k X k X k  

                (17) 

The index 
c

refers to INM’s parameters, 

'cf
denotes the 

derivative of the output activation function and 

c

j
V

 is the 

global input of the output node
j

. 

For the node h   from the hidden layer, the sliding surface is 

expressed as follows: 

     2 1 1
.c c c

Hh Hh H Hh
S k X k C X k 

                (18) 

Where h  is the hidden node, 1
0

H
C 

 

       
'

1 1
. .c c c c c

Hh j jh H h
X k X k W k f R k  

                  (19) 

     2 1 1
1c c c

Hh Hh Hh
X k X k X k  

                 (20) 

Where 

c

jh
W

  is the weight between the output node j  and the 

hidden node h  of the INM, 

'c

H
f

is the derivative of the hidden 

activation function and 
c

h
R

 denotes the global input of the 

hidden node
h

. 

Thus, the weights update equations of the INM based on the 

SM-BP algorithm are given by equations (21) and (22):  

       1
.sgn . .c c c c

jh c j j Hh
W k S k X k Y k                     (21) 

       1
.sgn . .c c c c

hi c Hh Hh i
Z k S k X k T k                     (22) 

c

hi
Z

is the INM’s weight between the hidden node h and the 

input node
i

, 
c

Hh
Y

 represents the output of the hidden node
h

c

i
T

represents the input of the input node
i

of the INM ,
0

c
 

 

and 
0

c
 

further information of the limits for the gain c


and c


 can be found in reference [19]. 

 After satisfactory training, the synthesized INM is simply 

cascaded with the plant as a neural controller of the uncertain 

nonlinear system [23] as given in Fig.3. Clearly, this approach 

relies heavily on the fidelity of the inverse neural model used 

as controller. For general purpose use serious questions arise 

regarding the robustness of the INM controller. This lack of 

robustness can be attributed primarily to the absence of 

feedback. This problem can be overcome to some extent by 

using on-line learning: the parameters of the inverse model 

can be adjusted on-line [24]. In this work, in order to improve 

the performance of the developed INM controller, in presence 

of strong parametric variations, other control strategies such 

that: hybrid control and neuro-sliding mode control are 

adopted. 

 

Fig. 3 : INM control structure 

4.2 Hybrid Control 
This approach has been proposed in [25-26]. It consists on 

operating simultaneously a conventional controller and a 

connectionist model to improve the control performance. In 

fact, the INM developed in section 4.1, trained using SM-BP, 

is used with a proportional-integral controller PI to generate a 

control action given as:  

( ) ( ) ( )
INM PI

u k u k u k 
                  (23) 

With 
( )

INM
u k

 and 
( )

PI
u k

 represent the output of the INM 

controller and the output of the PI controller respectively.  

( ) ( 1) ( ) ( 1)
PI PI p i

u k u k k e k k e k    
                           (24) 

pk
and ik

are proportional and integral gains, respectively. 

( )e k  is the tracking error defined as:  



 



 

( 1)y k 

 
( 1)dy k 

 DNM INM 

Learning  algorithm 

𝑢(𝑘) 

𝑍−𝑖  

ce

 

( 1)y k 

 
( 1)dy k 

 Syste
m 

INM 

iZ 

 

iZ 
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( ) ( ) ( )de k y k y k                                  (25) 

With ( )dy k represents the desired output and ( )y k  is the 

actual system output.  

 
Fig. 4 : Hybrid control structure 

4.3 Neuro-sliding mode control 
Sliding-mode has been widely used to control uncertain 

nonlinear systems. In fact many studies have been proposed 

towards finding a controller that guarantees robustness and 

satisfactory tracking performances [27-28-29].   

In general, the sliding mode control law based on Lyapunov 

stability theory is given by: 

( ) ( ) ( )
eq c

u k u k u k 
             (26) 

Where 
( )

eq
u k

is the equivalent control law and 
( )

c
u k

is the 

corrective term added to ensure robustness.  

The classical SMC suffers mainly from two disadvantages. 

The first one is the high frequency oscillations of the 

controller output, termed “chattering”. The second is that a 

complete knowledge of the plant dynamics is needed in the 

computation of the equivalent control [30]. In the literature, 

many works adopt the neuro-sliding mode control as a 

structure to solve these problems [31-32-33]. In fact, two 

parallel neural networks are used to realize the equivalent 

control and the corrective control as in Fig.5.  

 

 

 

 

 

 

Fig. 5 : Neuro-sliding mode control structure 

NN1 and NN2 are two neural networks used, respectively, to 

estimate the equivalent control and to generate the corrective 

control to estimate the chattering effects. The sum of 
( )

eq
u k

 

and 
( )

c
u k

 forms the control signal to be applied to the 

controlled system. 

In this work, the adopted neuro-sliding control structure is 

shown in Fig.6. The INM as presented in section 4.1 is used 

with a second order sliding mode corrective control to 

generate the control signal to be applied to the uncertain 

system. 

The control action is computed as follows: 

2

( ) ( ) ( )
INM C

u k u k u k 
                  (27) 

Where
( )

INM
u k

is the control action provided by the INM and 

2

( )
C

u k
represents the second order sliding mode corrective 

control. 

For the system defined by equation (1), the following sliding 

surface is selected: 

( ) ( ) ( )S k e k e k  
                                   (28)  

( ) ( ) ( )

( ) ( ) ( 1)

de k y k y k

e k e k e k

 

   
                        (29) 

With
( )dy k

and


donate respectively the desired output and 

a positive constant that determines the slope of the sliding 

surface. 

 
 
 
 
 
 
 
 
 
 
Fig. 6 : The adopted neuro-sliding mode control structure 

 In case of second order sliding mode control, the sliding 

surface and the sliding mode corrective term are given by 

equations (30) and (31), respectively [34]: 

( ) ( ) ( 1)k S k S k   
                      (30) 

With 
0,1   to ensure the stability of ( ).k  

The associated control action is given by the following 

equation: 

2 2

( ) ( 1) ( ( ))
c c

u k u k K sign k  
                (31) 

K
 is a constant and 

 .sign
 is the signum function defined 

as:  

 

1 ( ) 0

( ) 0 ( ) 0

1 ( ) 0

k

sign k k

k



 






 
                    (32) 

5. SIMULATION RESULTS 
In this section, the different proposed neural control strategies 

are evaluated through a numerical example described by a 

recurrent nonlinear equation inspired from [6]: 

Consider the nonlinear uncertain system given by equation 

(33) which is a modified version of the one presented in [6]: 

3

2

( ) ( )
( 1) ( ) ( )

1 ( ) ( )

a k y k
y k c k u k

b k y k
  


             (33) 

The variables
( )u k

and ( )y k  indicate respectively the input 

and the output of the system at the instant
k

.  

( 1)dy k 

 
+ 

( 1)e k 

 

+ ( 1)y k 

 

( )u k

 Syste
m 

Classica
l 

Controll
er 

INM 
+ 



 


 



 

( )
c

u k

 

( )
eq

u k

 

( 1)dy k 

 

Syste
m 

NN
1 

NN
2 

( 1)y k 

 



 

( )
INM

u k

 



 



 



 

Corrective control 
 

( 1)y k 

 Syste
m 

INM 

Second 
Order SMC 

2

( )
c

u k

 

( 1)dy k 
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,a b
and

c
are bonded uncertain parameters such as: 

( ) 0.25;1.75a k    ,
( ) 0.5;1.5b k   

1 ( ) 0.95;1.05

( ) 2 ( ) 0.9;1.1

3 ( ) 0.8;1.2

case c k

c k case c k

case c k

   


   


     

Assume that the variations of the parameters 
,a b

and
c

 can 

be given by the following figure: 

 
Fig. 7 : Variation of a (1), variation of b (2), and variation 

of c (3) 

5.1 Neural Modeling: DNM 
According to the control structure, a DNM has to be 

developed to emulate the behavior of the uncertain nonlinear 

system (33). The proposed DNM has two inputs ( )u k and 

( )y k , 
( 1)

m
y k 

is the output of this model. The input is a 

signal with amplitude distributed over the interval
0 , 2   . In 

order to ensure compromise between the quality of modeling 

and the time of convergence, the choice of the DNM’s 

parameters has been done after several simulations. In fact, 

neural model parameters are chosen such that: 
5m

c
N 

 and a 

total of training sets 200.N  In this work, the SM-BP 

algorithm considers fixed learning rates. Thus several 

simulation results were carried out in order to find the best 

values such that the sliding surface be smooth enough, 

avoiding thus chattering problems. The deduction of the 

boundaries of  m


 and m


is not shown here, nevertheless, the 

values chosen are within these boundaries. Fig. 8 illustrates 

the behavior of the DNM on a test data set for the parametric 

variations given by Fig.7. 

Table 1. DNM training parameters 

Case 1 

( ) 0.25 , 1.75a k   

( ) 0.5 , 1.5b k     

( ) 0.95 , 1.05c k   

 

Case 2 

( ) 0.25 , 1.75a k   

( ) 0.5 , 1.5b k     

( ) 0.9 , 1.1c k     

Case 3 

( ) 0.25 , 1.75a k     

( ) 0.5 , 1.5b k     

( ) 0.8 , 1.2c k     

0.48, 4.6

1

m m

HC C

  

 

 

9, 5

5

m m

HC C

  

 
 

6.5, 1

3.5

m m

HC C

  

 
 

 

Fig. 8 : Evolution of the system output ( )y k , the DNM 

output 
( )

m
y k

 for the validation set for different cases of 

variation of parameters 
,a b

and c  

According to the simulation results given by Fig.8, the DNM 

presents acceptable accuracy for the representation of the 

dynamic of system (33) for small variation of the parameter c

 0.95,1.05 , 0.9,1.1c c       
. However, for more important 

variation 
 0.8,1.2c  

 the DNM is less accurate.  

5.2 Neural Control  
The design of the robust neural controller for uncertain 

nonlinear systems through three control strategies is presented 

in this section. 

• INM controller 

After satisfactory training of the DNM, it is used to train the 

INM. The input vector of the INM is composed by the desired 

output 
( 1)dy k 

and the output of the neural model ( )y k , one 

hidden layer with five hidden neurons 
5c

c
N 

and ( )u k as 

output. The training set is composed by 200.N   INM 

training parameters are given by table 2. 

Table 2. INM training parameters 

Case 1 

( ) 0.25 , 1.75a k   

( ) 0.5 , 1.5b k     

( ) 0.95 , 1.05c k     

Case 2 

( ) 0.25 , 1.75a k   

( ) 0.5 , 1.5b k     

( ) 0.9 , 1.1c k     

Case 3 

( ) 0.25 , 1.75a k     

( ) 0.5 , 1.5b k     

( ) 0.8 , 1.2c k     

3, 9.8

1

c c

HC C

  

 
 

2, 13

2

c c

HC C

  

 
 

3, 15

5

c c

HC C

  

 
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After a satisfactory training, the synthesis INM is placed in 

cascade with the plant to be controlled, thus it is used as a 

neural controller for the uncertain nonlinear system. The 

evolution of the system output for the parametric variations 

given by Fig. 7, the desired output and different control signal 

are illustrated by Fig.9. 

 
Fig. 9 : Evolution of the system output ( )y k , the desired 

output 
( )dy k

 and the control signal ( )u k  for different 

cases of the variation of parameters 
,a b

and c  

To show the robustness performances of the synthesized INM 

controller against parametric variations given by Fig.7, the 

error between the desired output and the system one is 

computed as follows:  

 
100

2

1

1
( ) ( )

100

d

k

E y k y k


 
             (34) 

Table 3. Comparative results 

Parametric variations E  

Case 1 0.0038 

Case 2 0.0114 

Case 3 0.2012 

 
It is noted from Fig.9 and table 3 that the INM controller is 

not able to present satisfactory tracking performances for the 

parametric variations of case 3 where:   

 ( ) 0.25 ;1.75 , ( ) 0.5 ;1.5 ( ) 0.8 ;1.2 .a k b k and c k            

Thus it is recommended to propose others control strategies in 

order to improve control results of the system (33) affected by 

strong parametric uncertainties. 

Assume that: 
( ) 0.25;1.75 ,a k    ( ) 0.5;1.5b k     and 

( ) 0.8;1.2c k     in the following parts. 

 

 
 

Fig. 10 : Variation of a  (1), variation of b  (2) and 

variation c (3)  

• Hybrid control 

According to the hybrid control structure, a proportional 

integral controller is used to operate simultaneously with the 

INM developed in the previous section. The proportional and 

the integral gains are chosen such as: 
0.1

p
k 

 and 
0.01

i
k 

. 

The evolution of the system output, the desired one and the 

control signal are shown in Fig.11. 

The performance result of the hybrid control is compared with 

the INM one.  

 
Fig. 11:  Evolution of the system output ( )y k  controlled by 

hybrid control strategy and INM controller, the desired 

output ( )dy k  (1) and control signal ( )u k  associated to the 

hybrid approach (2) 

Fig.11 shows that the performance of the hybrid control 

strategy is satisfactory when the system to be controlled is 

affected by parametric variations given by Fig.10.  

• Neuro-sliding mode control 

For this proposed neuro-sliding mode control approach, a 

second order sliding mode corrective controller is used to 

operate with the INM synthesized previously in order to 

compensate the effect of the parametric variations on the 

system to be controlled. 

The simulations parameters are chosen as: 

2.5, 0.2, 0.03, 0.47K     
 

In order to avoid chattering problems, the (.)sign function is 

replaced by the following function: 

( ) ( )
1

( ( ))
( )

( ( ) 1

k k

sat k
k

sign k

 

 











 



              (35) 

Fig.12. illustrates the evolution of the system output, the 

desired one and the control signal. 
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The performance result of neuro-sliding control is compared 

with the INM ones. 

 

 
 
 
 
 
 

Fig. 12 : Evolution of the system output ( )y k  controlled by 

neuro-sliding control strategy and INM controller, the 

desired output ( )dy k  (1) and control signal ( )u k  

associated to the            neuro-sliding mode approach (2) 

It is noted from the simulation results given by Fig.12 that the 

adding of the second order neuro-sliding mode controller to 

the INM has improved the system tracking performances. The 

performances of the different control strategies presented 

above are recapitulated in table 4.   

Table 4. Comparative results 

Control Strategy E  

INM control 0.2012 

Hybrid control 0.0062 

Neuro-sliding mode control 0.0057 

6. CONCLUSION 
Tree neural control strategies of a class of SISO nonlinear 

discrete time system affected by parametric variations were 

proposed in this paper. The dynamic of this system was 

approximated by a DNM, in a first step, then based on the 

specialized learning technique, an INM was synthesized. The 

SM-BP algorithm was the used training algorithm adopted in 

this work. In order to improve the tracking performances of 

the INM controller in case of important parametric variations, 

hybrid control and neuro-sliding mode control strategies were 

proposed. A simulation example was employed to illustrate 

the effectiveness of the proposed control strategies. As future 

work, others neural control strategies will be studied.  
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