
International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.11, June 2016

40

Applying Bi-Directional Search Strategy in Selected

String Matching Algorithms

Grishma Pandey
PG-Scholar

IET-Devi Ahilya University
Indore - 452017, India

G. L. Prajapati, PhD
Department of Computer Engg.

IET-Devi Ahilya University
Indore - 452017, India

ABSTRACT
String matching is an important problem in computer science

having several practical applications. In this paper, we apply

bi-directional searching mechanism in exact string matching

algorithms: Boyer Moore, Brute Force, Knuth- Morris Pratt,

and Rabin Karp. Experiments show that this strategy leads to

better efficiency of these string matching algorithm.

Keywords
Boyer Moore Algorithm, Brute Force Algorithm, Knuth-

Morris Pratt Algorithm, Rabin Karp Algorithm

1. INTRODUCTION
String searching algorithms, sometimes called string matching

algorithms, are an important class of string algorithms that try

to find a place where one or several strings (patterns) are

found within a larger string or text. The purpose of string

matching algorithms is to find all occurrences of the pattern in

the text string. There are main 2 techniques of string matching

one is exact matching. In exact string matching, pattern is

fully compared with the selected text window (STW) of text

string and display the starting index position, and other is

approximate matching. In approximate string matching, if

some portion of the pattern matched with STW then it

displays the results.

The problem of string matching is that there are two strings

one is text T [1.....n] i.e. is main string given and the other is

pattern P [1.......m] i.e. is the given string to be matched with

the given main string given m<=n.

1.1 Exact String Matching Problem
We are given a text string pattern string we want to find all

occurrences of P in T. In Exact string matching problem the

pattern is exactly found inside the text [1].

Consider the following example:

T = AGCCTAAGCTCCTAAGTC

P =CCTA

There are two occurrences of p in T as shown below:

AGCCTAAGCTCCTAAGTC

A brute force method for string matching algorithm:

T =ACCACTAGA

P =ACTA

 ACTA

 ACTA

 ACTA

If the brute force method is used, many characters which had

been matched will be matched again because each time a

mismatch occurs, the pattern is moved only one step.

There are many string matching algorithms. Nearly all of

them are concerned with how to slide the pattern. Few of them

are listed below.

1.1.1 Boyer Moore Algorithm [2] [8] [9]
 Performs the comparisons from right to left.

 Preprocessing phase in O(m) time and space

complexity.

 Searching phase in O(m×n) time complexity.

 n text character comparisons in the worst case when

searching for non-periodic pattern.

 O(n/m) best performance.

1.1.2 Brute Force Algorithm [6] [7] [8]
 No preprocessing phase.

 Constant extra space needed.

 Always shifts the window by exactly 1 position

 to the right.

 Comparisons can be done in any order.

 Searching phase in O (m×n) time complexity.

 2n expected text character comparisons.

1.1.3 Knuth- Morris Pratt Algorithm [5] [8]
 Performs the comparisons from left to right.

 Preprocessing phase in O(m) space and time

complexity.

 Searching phase in O(m+n) time complexity

independent from the alphabet size.

 Performs at most 2n -1 text character comparisons

during the searching phase.

 Delay bounded by log Ф (m) where Ф is the golden

ratio (1+√5)/2.

1.1.4 Rabin Karp Algorithm [3] [9]
 Uses a hashing function.

 Preprocessing phase in O (m) time complexity and

constant space.

 Searching phase in O(m× n) time complexity.

 O(m+n) expected running time.

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.11, June 2016

41

1.1.5 Morris Pratt Algorithm [4]
 Performs the comparisons from left to right.

 Preprocessing phase inO(m) space and time

complexity.

 Searching phase in O(m+n) time complexity

independent from the alphabet size.

 Performs at most 2n -1 text character comparisons

during the searching phase.

 Delay bounded by m.

1.1.6 Quick Search algorithm [7]
 Simplification of the Boyer Moore algorithm.

 Uses only the bad character shift.

 Easy to implement.

 Preprocessing phase in O (m) time and O(σ)space

complexity.

 Searching phase in O(m×n) time Complexity.

 Very fast in practice for short patterns and large

alphabets.

2. LITERATURE REVIEW
Boyer-Moore (BM) [2] [3] [4] [5] algorithm is proposed in

1977 and at that time it considered as the most efficient string

matching algorithm. It performed character comparisons in

reverse order from right to the left of the pattern and did not

require the whole pattern to be searched in case of a

mismatch. In case of a match or mismatch, it used two

shifting rules to shift the pattern right. The time and space

complexity of preprocessing phase is O(m+|∑|) and the worst

case running time of searching phase is O(nm + |∑|). The best

case of Boyer-Moore algorithm is O(n/m).

Brute force (BF) [1] or Naïve algorithm is the logical place to

begin the review of exact string matching algorithms. It

compares a given pattern with all substrings of the given text

in any case of a complete match or a mismatch. It has no

preprocessing phase and did not require extra space. The time

complexity of the searching phase of brute force algorithm is

O(mn).

Knuth-Morris-Pratt (KMP) [2] algorithm is proposed in 1977

to speed up the procedure of exact pattern matching by

improving the lengths of the shifts. It compares the characters

from left to right of the pattern. In case of match or mismatch

it uses the previous knowledge of comparisons to compute the

next position of the pattern with the text. The time complexity

of preprocessing phase is O(m) and of searching phase is

O(nm).

Quick Search (QS) [9] algorithm perform comparisons from

left to right order, it's shifting criteria is by looking at one

character right to the pattern and by applying bad character

shifting rule. The worst case time complexity of QS is same as

Horspool algorithm but it can take more steps in practice.

3. IMPROVED STRING MATCHING

3.1 Basic idea
Proposed Improved String matching algorithm compares a

given pattern with selected text window from both sides,

simultaneously, one character at a time within the text

window. It did not require the whole pattern to be searched if

a mismatch occurs. In case of a mismatch or a complete match

of the pattern, the mismatched and right pointers scan for the

mismatched and rightmost characters of the STW to the left of

the related text characters in pattern at same shifts length.

Then align the pattern to new selected text window of string

when rightmost and mismatched characters matched at same

shifts in left of pattern. A complete match will be found when

the both left and right pointers cross each other at the middle

of the pattern. The comparison order of pattern's characters

with selected text window can be, as shown in the figure 1.

Figure 1: Comparison of pattern

3.2 Working of String Matching algorithm
Improved String Matching algorithm is basically based on the

bad character rule of Boyer-Moore algorithm where only one

character is used to identify the shifts. Improved String

Matching algorithm has number of cases to shift the pattern

maximum to right of text window. Suppose T(1…n) is the

text string and P(1…m) is the pattern and we compare

P(1…m) with T(i…i+m-1) from both sides of the pattern, one

character at a time, start from right side of the pattern.

3.3 Implementation of String Matching

Algorithm
3.3.1 Preprocessing Phase
Preprocessing phase finds occurrences of the rightmost and

the mismatched characters of text string in the left of the

pattern, when a mismatch caused at any position of the

pattern. This phase helps to take decision of moving pattern to

the right of the selected text window. As Algorithm 1 show,

Preprocessing function pass a pattern string, rightmost and the

mismatched characters of the text string, and the index of

mismatched character. For loop, of this phase scans pattern

from second last to leftmost character of the pattern string by

decrementing the indexes of pattern. Inside for loop, if

rightmost character found in the pattern then check for the

mismatched character at same distance as in the selected text

window then returns the index of text string where the

rightmost character of pattern will align. If mismatched

character did not find in the left of pattern at same distance,

then return the index value according to rightmost character

found otherwise return index where shift of whole pattern take

place.

Algorithm 1: preprocessing phase
Input: String, string of length ―m‖.

Output: Return index ―j‖ where last character of ―P‖ aligns.

Preprocessor (P[], char rm, char mm, int Mindex)

{

j ← -1;

y ← length[P] - 2;

for i ← y to 0

if P[i] = rm

if mm ≥ 0 AND P[mm] = mm

j ← i;

i ← -1;

else if mm < 0

j ← i;

i ← -1;

else Break;

return k;

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.11, June 2016

42

3.3.2 Finding Phase
Finding will be performed between the pattern and the

selected text window of the text string. Algorithm 2 shows,

the Finding phase of Improved String Matching algorithm; as

external while loop which is used to shift the pattern to right

of the text window.

 Algorithm 2: Finding phase

1. Input: Text string of length ―n‖ and String of length

―m‖.

Output: One or all occurrences of pattern in text

string.

ImprovedPatternM (String T, String P) {

n ← T.length;

m ← P.length;

i ← m-1;

while i < n

left ← 0;

right ← m-1;

while left < right

if P[right] = P[i - left] AND P[left] = T[i-right]

if (left + 1) ≥ right

"We have match at:" (i+1) - m;

i←i+((m-1) - preprocessor

index);

left ← left+1;

right ← right-1;

else if P[left] ≠ T [i-right]

i ← i+((m-1)-(preprocessor index);

else

i ← i+((m-1)-(preprocessor index);

Break Inner While;

Two pointers are used to compare pattern with the selected

text window within the second while loop. A complete match

will be found, if both pointers cross each other at middle of

the pattern. Else, if mismatch caused by left or right pointers,

then preprocess function will be executed to calculate the

shifts where next attempt will be performed.

4. EXPERIMENTAL RESULTS
The efficiency of Improved String Matching algorithm is

measured and compared with existing techniques we compare

proposed technique with existing techniques named as Boyer-

Moore, BMH, Knuth-Morris-Pratt, Quick Search and Rabin

Karp. We pass a text string of n characters and compare

patterns of different sizes as 5, 10, 15, 20 and 25 respectively

from all these algorithms. Boyer- Moore, BMH, Knuth-

Morris-Pratt, Rabin Karp and Improved implemented in c and

results are shown in the form of graphs in figure .the results

are shown by using graphs in figs.

We have conducted all the experiments on a Notebook PC

with CPU 1.2 GHz using the gcc compiler.

The Table 1 and Figure 1 show the running time of Boyer-

Moore algorithm with different number of patterns (5 to 500

patterns) but the minimum length of pattern is 5.

In Boyer-Moore algorithm, if the number of pattern is

increases, the running time is also increase.

Table 1: Running Time Of Boyer-Moore Algorithm

Depending On Number Of Patterns

Number of pattern Running time (ms)

5 0.006000

10 0.061000

15 0.114000

20 0.119000

25 0.137000

Figure 1: Running Time Of Boyer-Moore Algorithm

Depending On Number Of Patterns

The Table 2 and Figure 2 show the running time of Knuth-

Morris-Pratt algorithm with different number of patterns (5 to

500 patterns) but the minimum length of pattern is 5.

The Table 3 and Figure 3 show the running time of Improved

String Matching algorithm with different number of patterns

(5 to 500 patterns) but the minimum length of pattern is 5.

Table 2: Running Time Of Knuth-Morris-Pratt Algorithm

Depending On Number Of Patterns

Number of pattern Running time (ms)

5 0.185000

10 0.201000

15 0.231000

20 0.260000

25 0.287000

Figure 2: Running Time Of Knuth-Morris-Pratt

Algorithm Depending On Number Of Patterns

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.11, June 2016

43

Table 3: Running Time Of Improved String Matching

Algorithm

Number of pattern Running time (ms)

5 0.04000

10 0.62000

15 0.66000

20 0.79000

25 0.86000

As results in the graph shows that improved algorithm took

minimum shifts as compare to other four algorithms. Results

also shows that in short pattern length, number of shifts is

closer to other algorithm but when pattern length is increased

Improved String Matching algorithm becomes more and more

efficient as compare to other algorithms.

Figure 3: Running Time Of Improved String Matching

Algorithm Depending On Number Of Patterns

a) Attempts Base Comparison

Total numbers of attempts taken by each algorithm using

different pattern lengths are shown in graph.

b) No. of Characters compare base Comparison

Total numbers of characters comparisons taken by each

algorithm using different pattern lengths are shown in

Graph.

There are two reason first it use two pointers one compare

from left and other from right simultaneously and other reason

is the prefix and suffix of the pattern string are matched in text

string. If prefix or suffix of the pattern early find mismatches

in the text then it produce much more efficient result as

compare to other algorithms. Figure 4 shows comparison on

the basis of character. In X axis Pattern Length is given and

corresponding time(in ms) for searching pattern shown in y

axis.

Figure 4: Character Based Comparison

5. CONCLUSIONS
In this paper, comparison is done on various kinds of string

matching algorithms. It is analyzed that the Boyer Moore

algorithm is extremely fast for large sequences, however

improved String Matching Algorithm improves shift decision

by scanning rightmost/leftmost character of the selected text

window. The analysis shows that the time complexity of

Improved String Matching Algorithm is O(mn/2) in searching

phase and O(m) in preprocessing phase.

6. REFERENCES
[1] Nimisha Singla, Deepak Garg,”String Matching

Algorithms and their Applicability in various

Applications”, International Journal of Soft Computing

and Engineering (IJSCE), Volume-I, Issue-6, January

2012.

[2] Apostolico , A. and Giancarlo, R., The Boyer-Moore-

Galil, String searching strategies revisited, SIAM Journal

on Computing, Vol. 15, 1986, pp. 98-105.

[3] Charras,C., Lecroq, T. and Pehoushek, J.D., A very fast

string matching algorithm for small alphabets and long

patterns, in Proceedings of Combinatorial Pattern

Matching, 1998, pp. 55-64.

[4] Amir A., Lewenstein M., and Porat E., Faster Algorithms

for String Matching with K-Mismatches, Journal of

Algorithms 50(2004) 257-275.

[5] Knuth D.E., Morris J.H., and Pratt V.R., Fast Pattern

Matching in Strings, Journal of Computing, Vol.6, No.2,

1977.

[6] Rami H. Mansi, and Jehad Q. Odeh, "On Improving the

Naïve String Matching Algorithm," Asian Journal of

Information Technology, Vol. 8, No. 1, ISSN 1682-3915,

2009, pp. 14-23.

[7] Lecroq, T.,A, Variation on the Boyer-Moore algorithm,

Theoretical Computer Science, Vol. 92, No. 1, 1992, pp.

119-144.

[8] Charras, C. and T. Lecroq, Hand Book of Exact String-

Matching Algorithms, Publication 2004, First Edition,

ISBN: 978-0-7546-64.

[9] Singla N., Garg D., String Matching Algorithms and their

Applicability in various Applications, International

Journal of Soft Computing and Engineering, ISSN: 2231-

2307, Volume-I, Issue.-6, January 2012.

IJCATM : www.ijcaonline.org

