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ABSTRACT

In a generic problem in search theory we have some metric search
space and two players - a target 1" and a searcher S. Mostly 7" is
static in the space according to some specified probability distribu-
tion or in some cases dynamic, and S’ starts its search at some arbi-
trary start point. The usual goal will be to design a strategy that min-
imizes the expected time for .S to find T". .S knows the search space
but has no other information and 7" could be a fully or partially
informed target. In some versions, .S has visibility characteristics
allowing it to see a small distance ‘0’ from its location. This kind
of exploration problems relate to various contexts, such as robot
motion planning in hazardous or inaccessible terrain, maintaining
security of large networks, and searching, indexing, and analyzing
digital data in the Internet [1] [2] [3]. One of the earliest examples
of such problems is the linear search problem, proposed by Bellman
[4] and Beck [3]. Here, the search space is an infinite line, with the
searcher initially at an arbitrary origin, and the target located at an
unknown point on the line, at distance d from the origin. The objec-
tive is to minimize the worst-case ratio of the distance traveled by
the searcher over d. Different scenario (with cycles) is considered
in cops and robbers problem [6] where the cops and robbers take
alternate turns in movements and the question usually posed is how
many pursuers are necessary to ensure the eventual capture of all
the robbers. The Isaac’s Princess and Monster problem [7] is also
a related problem but with different scenario. The Lost Cow prob-
lem [8] is stated as a short-sighted cow following along an infinite
fence and wants to find the gate. The lost cow problem is limited in
the idea that the target is static. In case of one dimensional space,
if a moving target wants to escape, then it can do so by constantly
moving away from the searcher. And in case of a cyclic graph, a
fully informed target can move around in cycles and never be found
by the searcher. The present study stands out in that it studies the
problem in case of undirected acyclic graph which was not studied
before. But the proposed search space offers an interesting envi-
ronment to both target and the searcher. To the target, it provides
an opportunity to move towards the searcher without being found;
and to the searcher it provides an easier search space by removing
the case of cyclic movement of the target. Sleator and Tarjan [9]
suggested evaluating the performance of an online algorithm using
competitive analysis. This paper proposes an online algorithm for
the provided search space and also attempts to find upper and lower
bounds of the competitive ratio.
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1. BACKGROUND

Let s and ¢ be two points in a graph G. Consider a searcher at s
that is searching for the point ¢ in G. If the robot has the complete
information of GG and also knows the exact location of ¢, then the
searcher can choose a path inside G to move from s to ¢. The choice
of a path depends on optimization criteria for the given problem. In
many situations, it is expected that the searcher follows the shortest
path from s to ¢ inside GG. In some other situations, the searcher may
be asked to follow a path from s to ¢ inside G which has the mini-
mum number of edges. There are known efficient sequential algo-
rithms for computing these types of paths from a starting point s to
the target point ¢ inside a known region G [[10]. Thus, the searcher
can compute an optimal path, depending upon the optimization cri-
teria, and then follow the path from s to t. Such path planning
algorithms are called of fline algorithms for target searching
problems in a known environment [11]. Consider a natural sce-
nario when the searcher does not have a complete knowledge of the
search space a priori, and also does not know the location of the tar-
get t, but can recognize the target. In such a situation, the searcher
is asked to reach ¢ from an arbitrary starting position s. The prob-
lem here is to design an efficient algorithm which a searcher can
use to search for the target t. This is called an online problem for
target searching in an unknown environment, and the algorithms
for such online problems are known as online algorithms. Ob-
serve that any such algorithm is online in the sense that decisions
must be made instantaneously. If a searcher is asked to explore or
see all points of an unknown environment rather than searching
for a particular target ¢, the problem is known as an online explo-
ration problem, and algorithms for such problems are known as
online exploration algorithms. One of the difficulties in work-
ing with incomplete information or with only local information is
that the path cannot be pre-planned and therefore, its global op-
timality can hardly be achieved. Instead, one can judge an online
algorithm based on its performance with respect to other existing



or theoretically feasible algorithms, or how ‘reasonable’ they are
with respect to ‘human watchmen’. As is the case with other online
problems [25] [9], the efficiency of online algorithms for search-
ing and exploration algorithms is generally measured using their
competitive ratios [1].

2. INTRODUCTION & LITERATURE REVIEW

The problem of a searcher traversing to find a target is an important
computational problem with several applications in various con-
texts. This class of problems usually have a searcher that must lo-
cate a target lying at some unknown location in the environment.
A general objective is to devise efficient strategies that allow the
searcher to locate the target as quickly as possible. One of the ear-
liest examples of such problems is the linear search problem, pro-
posed by Bellman [4] and Beck [5]. Here, the search space is an
infinite line, with the searcher initially at an arbitrary origin, and
the target located at an unknown point on the line, at distance d
from the origin. The objective is to minimize the worst-case ratio
of the distance traveled by the searcher over d. Exploration prob-
lems appear in various contexts, such as robot motion planning in
hazardous or inaccessible terrain, maintaining security of large net-
works, and searching, indexing, and analyzing digital data in the
internet [1]] [2]] [3]]. This problem is also closely relates to search
games [13] [14]. A good example is looking for a lost key on a road
when we do not know in which direction the key is and at what
distance. This linear-search problem is also called the star search
or ray search problem, which is known informally as the “m-lane
cow-path problem”. In this setting, there is a set of m semi-infinite
rays with a common origin O, and a searcher (cow) initially at an
origin O. The target (pasture) is located at distance d from O, how-
ever the searcher is oblivious of the ray on which the target lies. A
strategy is an algorithm that specifies how the searcher traverses the
rays and aims to minimize the worst-case distance traveled, again
normalized by the optimal distance d. This simple problem has im-
portant applications to robot navigation, artificial intelligence, and
operations research [[15],[16[],[171],[18]],[19],120],[21],[22]. This is
because it can be applied to cases that need efficient allocation of
resources for multiple tasks. A different application is the design
of efficient interruptible algorithms. This is an Al problem with
surprising connections to the ray-search problem [22]][23]. In this
paper the authors look for a good search strategy by balancing the-
oretical quality with practical applicability.

Searching problems are central to almost all areas of computer sci-
ence. Several variants of searching problems come up in the study
of data structures, database applications, computational geometry,
and artificial intelligence. Owing to the importance of searching
problems, many variants of simple searching have been studied by
several researchers, including searching in unknown environments
[24]) [23]], and searching in the presence of errors [26] [27]. The
present paper is not about shortest path but about the strategies and
completeness. Linear line was considered in lost cow problem. Dif-
ferent scenario (with cycles) are considered in cops and robbers
problem. But the kind of scenario which the authors presented here
is not considered by any of the researchers before. Here there is
no limitation on the movement of target. A target can move at any
speed to any vertex. There is also a consideration of the scenario
when a target may not be on the edge or vertex but in the space in-
between. The cops and robbers problem [6] and the lost cow prob-
lem [8] have some similarity to the present problem and can provide
some insight into some of the issues in the stated problem. In cops
and robbers problem, the cops and robbers take alternate turns in
movements. This feature/limitation is not there in the present prob-
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lem. In cops and robbers problem, the question usually posed is
how many pursuers are necessary to ensure the eventual capture of
all the evaders. But in the present problem, the question is what
strategy is certain of finding the target. The Isaac’s Princess and
Monster Problem [7]] is different scenario. The lost cow problem is
stated as a short-sighted cow following along an infinite fence and
wants to find the gate. This makes a convenient one-dimensional
planning problem. If the location of the gate is given, then the cow
can reach it by traveling directly. The lost cow problem is limited
in the idea that the target is static. Even if the target is dynamic
it can only avoid the searcher if it is moving away from the ori-
gin. But in the present problem, it is possible to miss the searcher
even when the target is moving towards the origin [see Fig: []l. In
the hunter-rabbit problem, it is easy to see that a single hunter can
catch the rabbit simply by guessing its location in the next turn.
However, if the hunter’s strategy is deterministic, knowing it, the
rabbit would never get caught. Similarly, the hunter could always
catch the rabbit in a single move if he knew its strategy. But there
are several differences between existing problems and the stated
problem. Lost cow is linear problem with static target where as the
stated problem is non-linear with dynamic target. The oil search
problem is a progressing solution and there is no change in the
depth of the oil which implies a static target. In the literature, the
names pursuer-evader, cop-robber, monster-princess, hunter-rabbit,
and sheriff-thief have been used somewhat synonymously. The au-
thors adopt the searcher-target term for it emphasizes the discrete
nature of the problem.

3. PROBLEM DEFINITION

The basic model of the search space for online graph exploration is
as follows. The undirected connected graph is G = (V, E). The au-
thors assume that the vertices are labeled so that the searcher is able
to distinguish them. Each edge e = (u, v) € E has a non-negative
real weight |e|, also called the length or the cost of the edge. To
simplify the study the authors assume that the length or cost of each
edge is uniform. For traversing an edge, the searcher has to pay the
respective edge cost. The searcher travels with constant maximum
speed of 1. The searcher knows the topology of the environment
(graph) but does not know the location of the target. The problem
of a searcher S trying to find a target 7" in an unknown search space
G with no a priori knowledge about the location of the target, falls
into the category of online algorithms. Though the term ‘visibility’
was used in many of the works reviewed, the authors would like
to use the term ‘detectability’. S has a ‘detectability zone’ which
is the range within which it can identify the target. 7" also has a
‘zone’ within which it can be detected in the environment. De-
pending on the environment of the search space, these zones can
vary in size - giving possibilities to several scenarios. For simplic-
ity, the authors will consider that the zone size is constant. Targets
and searchers are of two types — static and dynamic. Let Ts, Tp,
Ss and Sp denote static target, dynamic target, static searcher and
dynamic searcher respectively. Combinations such as static target
& dynamic searchers, dynamic target & static searchers, and dy-
namic target & dynamic searchers, make interesting search prob-
lems. Also the search space G may or may not have paths. If G is
pathless and target is static, then the best strategy for the searchers
is to flood G or do a zig-zag movement ultimately locating target.
Let find(S, T, G) be the polymorphic function defining the strat-
egy of a searcher S for locating the target 7" in search space G. The
various forms of the function are given below:

find(Sq, Ts, Gpp) — S is dynamic, T is static, G has no paths



Fig. 1. Zig-Zag Search

find(Sq4, Ts, G) — S is dynamic, T is static, G has paths

find(Sq, Tq, Gnp) — S is dynamic, T" is dynamic, G has no
paths

find(Sq4,Tq, G) — S is dynamic, T" is dynamic, G has paths
find(Ss, T4, Gypp) — S'is static, T is dynamic, G has no paths
find(Ss, T4, G) — S is static, T is dynamic, G has paths

If S was successful in locating 7', then find(S,T,G) = 1, other-
wise, 0. We know that find(Sq4, Ts, Gpp) will always be 1 because
entire search space is explored. But when G has paths, a zig-zag
search or flooding cannot not guarantee to find the target. Assum-
ing that the searcher has complete or partial information of the lo-
cation of the target will turn the search into a heuristic search. But
the authors assume that the searcher has no information about the
location of the target in the search space while the target may have
full or partial information about the strategy of the searcher.
Cost/length of the edges is uniform. Movements of searcher or tar-
get are linear. They cannot jump over any edges or vertices, that
is, movement can only happen through adjacent edges. If the tar-
get is constantly moving, then a simple strategy of the searcher is
to get on the target’s trail and follow it. But this only works for
“slower and continuously moving” targets. But in the stated prob-
lem, the target may move with any speed, even with a speed greater
than that of searcher, and hence the searcher cannot follow the trail.
As the target may move back to the old edges to escape from the
searcher, strategy of marking edges as visited/not-visited does not
help. So, the problem at hand is to design a complete scheme to
effectively find the target with minimum cost.

Sleator and Tarjan [9] suggested evaluating the performance of an
online algorithm using competitive analysis. In a competitive anal-
ysis, an online algorithm A is compared to an optimal offline algo-
rithm. An optimal offline algorithm knows the location of the tar-
get in advance and can find it with minimum traversal cost. Given
a target location o in our search space, if CA( o) denotes the cost
incurred by A and Copr( o) denotes the cost incurred by an op-
timal offline algorithm OPT'. The algorithm A can be called c-
competitive if there exists a constant a such that

Ca(o) <Copr(o) +a
for all target locations o. Here the authors assume that A is a deter-

ministic online algorithm. The factor cis also called the competitive
ratio of A.
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4. TARGET SEARCHING STRATEGY

A strategy is an algorithm that specifies how a searcher traverses
the search space in order to have the highest probability of locating
the target with minimum moves and in shortest time. Let e, es,
e3, .. e, be the edges of the graph G, and let ¢y, c3, c3, etc. be
the corresponding costs of searching the paths. If the total cost of
searching the whole graph is C, and i, j € G, then,

Co = chi — ch
i=1

jeG
Where j represent the edges which were not traversed twice.

If P(T) represents the probability of success of find(Sq,Ts, G)
and P(T;) represents the probability of success of
find(Sq4, T4, G), then

P(Ts)=1and P(T;) <1
P(T,) < P(Ty)

Let X be a deterministic strategy for a graph on-line search prob-
lem. For the problems we consider here it usually suffices to model
a searching strategy as a sequence of edges numbers, i.e., X =
(z1, 22, 23,...) with z;, > 0and 0 < k < n where n is the total
number of edges of graph G. In the beginning the position of the
searcher is a point O on the graph; it has to find a target ¢ that is
located somewhere on its left or right edges. In a one dimensional
space, if a searcher knows that a target is n steps away either to
the left or to the right, it could use the following algorithm: go n
steps to the left, and if the target was not found, turn back and go
2n steps to the right. It is not hard to see that this is the best it can
do. However, the value of n is unknown to the searcher. Therefore,
when going to the left (or right) the searcher has no way of judg-
ing when it is safe to assume that the target is located to the right
(or left) from its search starting point. Obviously for the searcher,
blindly betting on one of the directions is a bad idea in the worst
case. So, the algorithm that solves this kind of problem explores
both the paths alternatingly.

Fig. 2. Searching on a line

But if the search space is a two dimensional and the target is dy-
namic, as in fig(3), then an iterative deepening search on the al-
ternate sides could not guarantee that the searcher will locate the
target. This is because a dynamic target can find a path to escape
from the searcher as shown in the fi g(E[). If the edges are numbered,
and a searcher’s traversal sequence is (0,1,2,3,4,5,6,7,8,9), then the
target can use the following sequence (9,9,9,9,9,7.8,6,5,5) and es-
cape from the searcher successfully. In the above scenario, had the
search pattern of the searcher has been (0,2,4,3,6,8,7,5,9), then the
target would not have escaped from the searcher. So, it seems that
randomization of the search sequence of the searcher has overcome
this problem. But this may not necessarily work all the time and



Algorithm 1 Alternate edges search for a static target

1: Edges_Searched ES[] + {}

2: Edges_Remaining ER[] + {e1,ea,...en}
3: Next_Edge NE + {}

4: procedure SEARCH (Graph G)

5 while ER Not empty do
6: remove(next edge e from ER[])
7: add(edge eto NE)
8: search(e)
9: if target is found then
10: Return(find() = 1)
11: end if
12: add e to ES[]

13: end while
14: Return(find() = 0)
15: end procedure
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Fig. 3. Searching in the graph

is subject to the traversal sequence of the target. The target may,
by chance, have a sequence that helps it bypass the searcher. And
in the case of a fully informed target, randomization cannot really
help because there will always be a sequence for the target to make
up a counter sequence for escape.

Fig. 4. Searcher missing a target

Because of this possibility, the authors categorize targets into three
types.

Oblivious target: The oblivious target is not an informed target. It
has no idea about the search sequence of the searcher. So the tar-
get generates its complete traversal sequence in advance, before the
searcher begins its search.

Adaptive online target: This target may not have full informa-
tion about the total search strategy of the searcher. It observes the
searcher’s most recent move, guesses the next move, and then adap-
tively makes its own move. This target will plan its each move
adaptively, i.e., without knowing the random choices made by the
searcher on the present or any future move.
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Adaptive offline target: This target also generates a request se-
quence adaptively. This target makes the next move based on the
searcher’s most recent moves, but serves them optimally at the end.
As it can be understood, this target is so strong, that randomiza-
tion does not work against it. So, this is charged with the optimum
sequence for any of the searcher’s search sequence.

The competitiveness of a searcher’s randomized online algorithm
is measured by its performance against any oblivious target. For
deterministic algorithms, adaptive adversaries are not more pow-
erful than the oblivious ones since the algorithm’s moves can be
foreseen. But for randomized algorithms, it is worth introducing
the a-competitiveness against adaptive adversaries. The authors call
the a-competitive algorithms as a-competitive against any oblivious
adversary for contrast.

5. THE COMPETITIVE ANALYSIS

A standard technique to measure the quality of online algorithms
is competitive analysis [[12l], which compares the outcome of an
algorithm with an optimal offline solution.

Let A be a deterministic algorithm for the present search problem.
For any target ¢ at distance dist(¢) from the origin, searcher trav-
els a fixed distance according to algorithm A, which we denote
cost(A, t), to find the target. The authors say that algorithm A has
competitive ratio c if, for all target positions ¢,

cost(A,t) < c.dist(t) +a

where c and a are constants that are independent of the target posi-
tion ¢.

Let d be the distance of the target from the origin. The number of
steps taken during the alternate search will be as below:

Target — Steps

1—=2+d

2—=2+6+d

3—24+6+10+d

4—2+6+10+14+d

5—=2+6+10+14+184d

i.e.2(1+3+5+749....)

Let us assume that target is located on the right side of the proposed
graph from the origin. Assume that 2*~! < d < 2**! for some k.
Then the total distance traveled during the alternative search is
(21+42|—-2|42442]-8]+..+22F 1+ 2]|-2F +d=
22841 4 q)

If the location of ¢ is known a priori, then it is a straight walk of
length d from the origin to ¢.

So, the competitive ratio of the alternate search in the proposed
undirected acyclic graph is

(2.25+14q) 1+ 2.2k+1
e

_ 2.2k+1

- 1 + ok—1

If algorithm R is a randomized algorithm, then the distance trav-
eled by the searcher to find a particular target is no longer fixed.



Instead, cost(R, ¢) is a random variable, and the authors define the
competitive ratio by the expected value of this random variable. In
other words, algorithm R has competitive ratio c if, for all target
positions g,

Elcost(R,g)] < c.dist(g) +d

where c and d are constants as before. In particular, if an algorithm
for the present search problem has competitive ratio ¢, then for any
target that is distance n from the origin, the expected distance that
the searcher has to travel in order to find the target is at most cn
plus some small constant.

Let the randomized algorithm has a geometric ratio » > 1, where
is a constant that is fixed for the duration of the algorithm to make
sure that it will not include the searched edges repeatedly in its
search sequence. If the target is dynamic, then it has to include the
searched edges repeatedly, so the authors assume that » > 1. For
ease of reference, assume that the n edges are labeled with integers
0,1,....,n—1.

Algorithm 2 Random edge search algorithm

1: o < Arandom sequenceof {0,1,2,3,..n — 1}

: €+ Arandom real value from[0,1]
d<+ 7€

p+0

: procedure RANDOMSEARCH(Graph G)

Repeat

Explore path o(p) upto distance d

If target not found then return to origin
9: d<+d.r

10 p<+ (p+ 1)modn

11: Until goal found

12: end procedure

A A

However, the use of randomization is very limited; randomization
is needed only at the very beginning of the search, in order to pick
a random sequence and a random “initial search distance”. The al-
gorithm never needs access to a random number generator once
the search has begun. From the literature, it can be derived that the
competitive ratio of this random edge search algorithm is

R(r,n) = 1+ 2 Byt
The authors assume that adding an extra searcher is imposes high
cost. But if it was considered that the cost issue is to be ig-
nored then, a complete solution for finding the target can be easily
achieved with a minimum cost and minimal time.
Against an adaptive adversary, as the power of randomization
is severely limited, the complete solution is to adopt multiple
searchers. So, m different searchers can be employed to search for
the target. However, if they are all searching randomly, the authors
do not know which of the searchers will terminate successfully on
a given target. Also there is a possibility that none of them may
succeed in finding the target. It is because there is still a little pos-
sibility for a target to escape as shown in fig[6]
So let us discuss the best exploration strategies for the searchers. It
would not be the best strategy for the searchers to start off at one
end and scan through to the other end because the target may be
located on the farther end, resulting in the worst case.
Starting in the middle and searching alternatively in sequence also
does not seem to be the best strategy because while the searchers
move to the other side, the target may move to the already explored
edges.
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