
International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.12, June 2016

41

An Adaptive Data Mapping Storage Selection Algorithm

in Mobile Cloud Computing

Ahmed. A. A. Gad-ElRab
Faculty of Science

Al-Azhar University, Cairo,
Egypt

Eman. H. Zaky
Faculty of Science

Al-Azhar University, Cairo,
Egypt

Neveen I. Ghali
Faculty of Science

Al-Azhar University, Cairo,
Egypt

ABSTRACT
Mobile cloud computing (MCC) is a new computing paradigm

which tends to transfer the data storage and the data

processing from a mobile device to a cloud server on the

Internet. The cloud server may be a block sever or a file

server. In MCC, due to the limited resources of a mobile

device as processing power, battery power, and memory, the

main challenge is how to map data items into a cloud server

and select the best mapping server among block and file

servers. In this paper, the difficulties in mapping data items

are addressed and a new adaptive data mapping storage

scheme is proposed. The proposed scheme can select a block

or file mapping for mobile data items based on a defined cost

model which takes into account the energy consumption and

the total time delay for sending and retrieving of data to/from

the cloud server. In addition, the proposed scheme can select

the optimal number of blocks and files of data items that

adaptively changes with their cost models. The simulated

results show that the proposed algorithm achieves a better

mapping performance with minimum cost compared to the

mapping data items without any selection mechanism.

Keywords

Cloud computing, Mobile cloud computing, File level storage,

Block level storage.

1. INTRODUCTION
The advanced developments in web technology, information

technology (IT), and wireless communications present a new

architecture of computing which is called Cloud Computing

(CC). CC will be the next generation of IT Enterprise. In the

traditional solutions of computing architecture, the IT services

are maintained with suitable personnel, logical and physical

controls. While, CC manages and processes the data and

services optimally by moving the databases and application

software to the large data centers on the Internet which are

called clouds. It works on storing information of fixed

machine's hard drive or other local storage device, into a

remote database. The Internet provides the connection

between the computer and the database [1], [2]. Mobile cloud

computing is similar to cloud computing though there is no

correlated definitions.

Recently, a novel computing mode consists of mobile

computing and cloud computing which is called mobile cloud

computing (MCC) is developed. MCC provides cloud based

services to users through the Internet and mobile devices. Fig.

1 shows the architecture of MCC which can be simply divided

into cloud computing and mobile computing [3]. In MCC, an

access point or a base station with GPRS, WIFI, or 3G

capabilities is used to connect the mobile devices with the

Internet. Based on this architecture, by using a web browser or

desktop application, mobile users send service requests to a

cloud server. Then the cloud server establishes a connection

by allocating the required resources for these requests. At the

same time, to ensure the Quality of Service (QoS), the cloud

server implements the calculating and monitoring operations

until the connection is completed [3].

Therefore, the MCC extends the capabilities and reflects

advantages of cloud computing and develops the

functionalities of mobile computing. So, MCC is a

combination of the two technologies for developing a lot of

centralized, distributed, and grid applications. In MCC, the

developing, running, deploying and using of mobile

applications have been totally changed. Because, intensive

computing, data storage and mass information processing

have been transferred from the mobile device to the cloud. As

a result, computing capability and resources of the mobile

devices can be saved. In addition, the cloud service are not

restricted to fixed devices, but the mobile devices with people

like smartphone, iPad, Tablet, and PDA are suitable to access

and use these cloud services.

Fig 1: Architecture of Mobile Cloud Computing (MCC)

In MCC, the cloud server can be a block severs which stores

all data items as blocks or a file server which stores all data

items as files. Due to the limited resources of a mobile device

as processing power, battery power, and memory, the main

challenge is how to map data items into a cloud server and

how to select the best mapping server among block and file

servers for each data item.

In this paper, the difficulties in mapping data items are

addressed and a new mapping selection scheme is proposed,

the proposed algorithm can select a block or file mapping of

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.12, June 2016

42

mobile data items based on a defined cost model which takes

into account the energy consumption and the total time delay

for sending and retrieving the data to/from the cloud server. In

addition, the proposed scheme can adjust the optimal number

of blocks and files of data items that adaptively changes with

their cost models.

The rest of the paper is organized as follows: Section 1,

introduces a brief description for file and block storage levels

and reviews the related works. Section 2, describes proposed

model for data mapping selection problem in MCC. Section 3,

introduces the proposed algorithm. Section 4, presents the

conducted simulations and discusses their results. Finally,

Section 5 concludes the paper.

2. RELATED WORK
The online storage of data on the cloud is called cloud storage.

With this cloud storage, the mobile data is transferred and

stored in the cloud and the mobile device can access these data

from the cloud by sending a service or data requests. The file

level storage and block level storage are the two most

common technologies of the cloud storage system. These two

storage levels are described as follows.

File level storage: it is common in hard drives and Network

Attached Storage (NAS) devices. Here data read/write

happens with a client-server model. The client requests data

from the storage by using attributes, such as the data filename,

directory location, and URL. The server receives the client

request and looks up data storage locations where the data is

stored and retrieves it by using storing level functions. Here,

data is stored as bytes in a file format. Also, file level storage

is simple to use and implement which stores files and folders

and the visibility is the same to the clients accessing and to the

system which stores it. File level storage has a low

maintenance cost compared to block level storage. Also, file

level storage can handle access control, integrate with

corporate directories, so it is the base in building in network

attached storage systems. Scale out NAS is a type of file level

storage that merges a distributed file system that can scale a

single volume with a single name-space across many nodes,

and scale out NAS file level storage solutions can scale up to

several petabytes all while handling thousands of clients. As

capacity is scaled out, performance is scaled up.

Block level storage: it finds its major application in a Storage

Area Networks (SAN) environment. Here, data is stored as

blocks in hard drives, which are installed in a remote storage

arrays accessible to the network computers using Fiber

Channel or iSCSI. Also, the filing system sends a request to

the storage to write data to certain blocks and then retrieve it.

Typically, Logical Unit Numbers (LUN) are created, which

are treated like storage blocks and given to a server where, the

server views it as a local disk and reads from and writes to it.

Each storage block/storage volume can individually be treated

as an independent disk drive and can be controlled by an

external server operating system, and formatted with the file

system. Also, block level storage can be used to store files and

work as storage for special applications like virtual machine

file systems and databases. In SAN or storage area network

environment, to offers boot-up of systems which are

connected to them, block level storage is usually used. Also, it

supports various formatting of file systems like NFS, NTFS or

VMFS (VMware) or SMB (Windows) which are required by

the applications. The iSCSI and FCoE protocols are used in

block level storage for data transfer. In addition, data

transportation in block level storage is much reliable and

efficient.

In [4], checking for deduplication secrete sharing scheme used

for data fragmentations. While, convergent key approach is

proposed to encrypt data before deduplication in [5]. DROPS

Concept was introduced in [6], which is used for

fragmentation and Replication of data. In [6], coloring

algorithm for placing node is given. So, reliability is achieved.

While authors in [7] presents auditing algorithms for

achieving integrity.

For several decades, the database research community has

faced the challenge of consistent and scalable data

management. The first generic solution to this challenge is the

distributed database systems [8], [9]. This solution ensures the

global serializability when transacts with data which not

bounded to a single machine [10], [11].

Recently, software infrastructures and business models of

Internet services has been changed by using cloud computing

technologies. These cloud technologies provide and manage

various resources of computation and data storage over the

network that minimize the costs of data processing and

accessing operations [12], [13]. In [14] the way people access

computers and network services has been significantly

changed due to publicity of smart devices and mobile

networks. Also, many advanced smartphone applications

shows the effects of mobile cloud computing in building and

developing of these applications. In [15], the cloud computing

offers great convenience to users by transferring data to the

cloud. In this situation, users do not need to manage the

required resources and hardware. The well-known examples

of cloud computing vendors are Amazon Elastic Compute

Cloud (EC2) and Amazon Simple Storage Service (S3).

In [16], huge amounts of storage space and customizable

computing resources are provided by using the Internet-based

online services. At the same time, this eliminates the

responsibility of local machines for data maintenance. In

addition, the cloud service providers manage the availability

and integrity of the data for their users. In [17], to enable

convenient, ubiquitous, and on-demand network access to a

shared group of computing resources (e.g., services,

applications, servers, storage, and network) a cloud computing

model was proposed. This model can be deployed easily and it

minimizes the costs of management effort or service provider

interaction. In [18] authors tried to ensure file integrity across

multiple distributed servers, erasure-coding and block-level

file integrity checks are used. However, their scheme only

considers static data files and do not explicitly study the

problem of data error localization.

Fig. 2. The proposed MCC model

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.12, June 2016

43

3. PROPOSED MODEL FOR DATA

MAPPING STORAGE SELECTION

PROBLEM IN MCC
In MCC, based on the existing of these two storage levels, the

problem is how to map mobile data item by selecting the most

appropriate storage level for each data item by taking into

account the limited resources of a mobile device. This

problem is called Data Mapping Storage Selection (DMSS)

problem.

In the rest of this section, the assumptions and models are

introduced then the DMSS problem will be formulated.

3.1 Assumptions, and Models
Here, MCC system model consists of (1) mobile node, MN,

(i.e., mobile device with a user) which has a set of data items

DI = {di, 1<= i <= n}, and each data item di represents

different types of data (e.g., text, image, video, etc.). (2)

a file cloud server, fs, which stores all received data

elements di as files. (3) a block cloud server, bs, which stores

all received data elements di as blocks. The characteristics of

file and block servers as available storage, processing power,

and how many stored files/blocks of data in the server are

assumed to be known in advance. The energy consumed for

sending and receiving a data item di to/from a server s are

denoted as se(di; s) and re(di; s), respectively. Where, s can

be a file server fs or a block server bs.

Also, The time delay for sending and receiving a data item di

to/from a server s are denoted as std(di; s) and rtd(di; s),

respectively. Fig.2 shows the proposed MCC Model.

3.2 Cost Model for DMSS
In this subsection, the cost model for DMSS is described

for using the file and the block servers.

3.2.1 Cost by using block server
 In case of a block server, it is needed to classify each data

item before storing it in the appropriate block. So, the cost for

sending includes sending, classifying, and searching costs and

the cost for receiving includes retrieving and searching costs.

 Energy cost: the cost of the consumed energy for sending

DI to the file server bs is calculated as follows

𝐒𝐄𝐛𝐬(𝐃𝐈) = 𝐬𝐞(𝐝𝐢

𝐝𝐢∈𝐃𝐈

, 𝐛𝐬) (𝟏)

and the cost of the consumed energy for receiving DI from

the file server bs is calculated as follows

𝐑𝐄𝐛𝐬(𝐃𝐈) = 𝐫𝐞(𝐝𝐢

𝐝𝐢∈𝐃𝐈

, 𝐛𝐬) (𝟐)

By using Equations 1 and 2, the total energy cost by using bs

can be defined as follows.

𝐓𝐄𝐃𝐛𝐬 𝐃𝐈 = 𝐒𝐄𝐛𝐬 𝐃𝐈 + 𝐑𝐄𝐛𝐬 𝐃𝐈 (𝟑)

Time delay cost: the cost of the time delay for sending DI to

the block server bs is calculated as follows

𝐒𝐓𝐃𝐛𝐬(𝐃𝐈) = 𝐬𝐭𝐝(𝐝𝐢

𝐝𝐢∈𝐃𝐈

, 𝐛𝐬) (𝟒)

and the cost of the time delay for receiving DI from the file

server bs is calculated as follows

𝐑𝐓𝐃𝐛𝐬(𝐃𝐈) = 𝐫𝐭𝐝(𝐝𝐢

𝐝𝐢∈𝐃𝐈

, 𝐛𝐬) (𝟓)

By using Equations 7 and 8, the total time delay cost by using

bs can be defined as follows.

𝑻𝑻𝑫𝑪𝒃𝒔 𝑫𝑰 = 𝑺𝑻𝑫𝒃𝒔 𝑫𝑰 + 𝑹𝑻𝑫𝒃𝒔 𝑫𝑰 (𝟔)

3.2.2 Cost by using file server
 In case of a file server, the cost for sending includes sending

without classification and searching costs and the cost for

receiving includes retrieving and searching costs.

 Energy cost: the cost of the consumed energy for sending

DI to the file server fs is calculated as follows

SE𝑓𝑠(DI) = 𝑠𝑒(𝑑𝑖

𝑑𝑖∈𝐷𝐼

, 𝑓𝑠) (7)

and the cost of the consumed energy for receiving DI from

the file server fs is calculated as follows

RE𝑓𝑠(DI) = 𝑟𝑒(𝑑𝑖

𝑑𝑖∈𝐷𝐼

, 𝑓𝑠) (8)

By using Equations 7 and 8, the total energy cost by using fs

can be defined as follows.

𝑇𝐸𝐶𝑓𝑠 𝐷𝐼 = 𝑆𝐸𝑓𝑠 𝐷𝐼 + 𝑅𝐸𝑓𝑠 𝐷𝐼 (9)

 Time delay cost: the cost of the time delay for sending DI

to the file server fs is calculated as follows

STD𝑓𝑠(DI) = 𝑠𝑡𝑑(𝑑𝑖

𝑑𝑖∈𝐷𝐼

, 𝑓𝑠) (10)

and the cost of the time delay for receiving DI from the file

server fs is calculated as follows

𝐑𝐓𝐃𝐟𝐬(𝐃𝐈) = 𝐫𝐭𝐝(𝐝𝐢

𝐝𝐢∈𝐃𝐈

, 𝐟𝐬) (𝟏𝟏)

By using Equations 7 and 8, the total time delay cost by using

fs can be defined as follows.

𝐓𝐓𝐃𝐂𝐟𝐬 𝐃𝐈 = 𝐒𝐓𝐃𝐟𝐬 𝐃𝐈 + 𝐑𝐓𝐃𝐟𝐬 𝐃𝐈 (𝟏𝟐)

In MCC, the most important for the mobile user may be the

consumed energy, the time delay for sending and receiving

data, or both of them. To represent these priorities, the total

cost for each data item di ∈ DI by using fs and bs are

reformulated and the weighted accumulated costs are

proposed which are defined as follows.

𝐭𝐜𝐟𝐬 𝐝𝐢 = 𝐰𝟏

𝐭𝐞𝐜𝐟𝐬 𝐝𝐢

𝐄𝐌𝐚𝐱
+ 𝐰𝟐

𝐭𝐭𝐝𝐜𝐟𝐬 𝐝𝐢

𝐓𝐃𝐌𝐚𝐱
 (𝟏𝟑)

and

𝐭𝐜𝐛𝐬 𝐝𝐢 = 𝐰𝟏

𝐭𝐞𝐜𝐛𝐬 𝐝𝐢

𝐄𝐌𝐚𝐱
+ 𝐰𝟐

𝐭𝐭𝐝𝐜𝐛𝐬 𝐝𝐢

𝐓𝐃𝐌𝐚𝐱
 (𝟏𝟒)

where tecfs(di), ttdcbs(di), tecbs(di), and ttdcbs(di) are the

energy and the time delay costs (i.e., for sending and

receiving) by using fs and bs for di, respectively. Their values

can be calculated by using Equations 3, 6, 9, and 12 for one

data item di instead of using the whole set of data items DI.

EMax and TDMax represent the maximum consumed energy

and the maximum time delay that are accepted by the mobile

user or the system model for each data item di ∈ DI,

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.12, June 2016

44

respectively. Also, w1 and w2 are the weight values for

consumed energy and time delay, respectively, such that

𝐰𝟏 + 𝐰𝟐 = 𝟏 (𝟏𝟓)

These weight values represents the importance degree of the

consumed energy and the time delay for the mobile user.

By using Equations (13) and (14), the total weighted

accumulated costs by using fs and bs are defined as follows.

𝐓𝐂𝐟𝐬(𝐃𝐈) = 𝐭𝐜𝐟𝐬(𝐝𝐢

𝐝𝐢∈𝐃𝐈

) (𝟏𝟔)

and

𝐓𝐂𝐛𝐬(𝐃𝐈) = 𝐭𝐜𝐛𝐬(𝐝𝐢

𝐝𝐢∈𝐃𝐈

) (𝟏𝟕)

3.3 Problem Formulation
In MCC, the main goals of DMSS problem are (1) minimizing

the energy consumed for sending and retrieving data and (2)

minimizing the time delay which spent for sending and

retrieving data. So, based on the previous described cost

model in section 3, the goal is finding the set of data items,

Dbs ⊆ DI, which will be stored in the block server bs and the

set of data items, Dfs⊆ DI, which will be stored in the file

server fs. Such that there is no any data item can be mapped to

bs and fs at the same time. Therefore, The DMSS can be

formulated as follows:

Objective: find Dbs ; Dfs

such that

 𝐷𝐼 > 0 (18)

𝑇𝐶𝑏𝑠 𝐷𝑏𝑠 + 𝑇𝐶𝑓𝑠 𝐷𝑓𝑠 ≤ 𝑇𝐶𝑏𝑠 𝐷𝐼 (19)

𝑇𝐶𝑏𝑠 𝐷𝑏𝑠 + 𝑇𝐶𝑓𝑠 𝐷𝑓𝑠 ≤ 𝑇𝐶𝑓𝑠 𝐷𝐼 (20)

𝐷𝐼 = 𝐷𝑏𝑠 ∪ 𝐷𝑓𝑠 , 𝐷𝑏𝑠 ∩ 𝐷𝑓𝑠 = ∅ (21)

Where, Equation 18 means that the set of data items is not

empty. Equation 19 means that the total cost of mapping data

items to the file and block servers is less than or equal the total

cost of mapping data items to the block server only. Equation

20 means that the total cost of mapping data items to the file

and block servers is less than or equal the total cost of

mapping data items to the file server only. Equation 21 means

that some of data items are mapped to block server and the

other data items are mapped to file server. Also, there is no

any data item can be mapped to both server in the same time.

4. ADAPTIVE DATA MAPPING

SELECTION ALGORITHM
In this section, to solve the DMSS problem which was

formulated in the previous section, a new mapping selection

Algorithm called Adaptive Data Mapping Storage Selection

Algorithm (ADMSSA) is proposed.

4.1 Basic Idea
To solve the DMSS problem, the basic idea of ADMSSA is

based on the following three issues: (a) determining the

importance degree of consumed energy and time delay for

each data item di  DI by defining the values of w1 and w2,

(b) estimating the total mapping cost of each data item di 

DI on the file and block servers by calculating their costs

which were determined by using Equations (13) and (14), and

(c) comparing the calculated costs and selecting the most

appropriate mapping server based on the needs of a mobile

user (e.g., minimum mapping costs).

4.2 The Proposed Algorithm

To satisfy the basic idea of ADMSSA, in this section, the

proposed algorithm and its description will be presented.

ADMSSA consists of two phases: (1) Estimating phase which

estimates and predicts the energy and time delay costs for all

generated data items by mobile device with the user of file and

block mapping servers, separately, and (2) Selecting phase

which select the best appropriate mapping server for each

generated data item that satisfy the user needs. The steps of

these two phases are described as follows.

A) Estimating phase: this phase consists of the following

steps

A1. Collecting the profile information for the file and the

block servers (fs and bs).

A2. Defining values of w1 and w2 for data item di.

A3. Predicting the consumed energy cost, tecfs(di) and time

delay cost, ttdcfs(di) for di by

A4. Calculating the file server mapping cost tcfs(di) and the

block server mapping cost, tcbs(di) by using Equations 13

and 14.

B) Selecting phase: this phase consists of the following steps

B1. Comparing the calculated file server mapping cost,

tcfs(di) with the calculated block server mapping cost,

tcbs(di).

B2. Selecting the mapping server with the minimum

mapping cost for data item di.

B3. Sending the data item di to the selected mapping server.

Fig. 3. shows the architecture of ADMSSA phases

Fig. 3. The proposed ADMSSA phases

Algorithm 1 shows the steps of ADMSSA with its two phases.

As shown in Algorithm 1, the input parameters for ADMSSA

are the set of data items DI, the file server fs, the block server

bs, the weight values w1 and w2, the maximum accepted

consumed energy EMax, and the maximum accepted time

delay TDMax. In steps 1 and 6, ADMSSA collects all profiles

information (e.g., # of stored files or blocks, processing

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.12, June 2016

45

power, bandwidth, etc.) for bs and fs in profbs and proffs ,

respectively. In steps 3 to 6, ADMSSA initializes the sets of

mapping data items (Dfs and Dbs) and the estimated total

costs (TCfs and TCbs) for fs and bs, respectively. In steps 8

to 13, ADMSSA executes the steps of its estimating phase by

predicting and calculating the mapping cost for each data item

di ∈ DI. In steps 14 to 22, ADMSSA executes the steps of its

selecting phase by comparing mapping cost of the file and the

block servers for each data item di ∈ DI and filling the sets of

mapping data items (Dfs and Dbs) based on the result of the

comparison as shown in steps 15 and 19. Also, in steps 16 and

20, ADMSSA adds the mapping cost of di to the estimated

total costs for fs or bs. Then, ADMSSA sends the mapped data

item to the selected server as shown in step 17 in case of fs is

selected and in step 21 in case of bs is selected.

Finally, ADMSSA produces the set of mapped data items to

the file server, Dfs, the set of mapped data items to the block

server, Dbs, the mapped cost for the file server, TCfs(Dfs),

and the mapped cost for the block server, TCbs(Dbs).

Algorithm 1: Adaptive Data Mapping storage Selection

Algorithm

[ADMSSA]

Input: A set of data items DI, a file server fs, a block server

bs, w1, w2, EMax, and TDMax

1: profbs ← collects bs profile

2: proffs← collects fs profile

3: Dfs ← ∅

4: Dbs ← ∅

5: TCfs(Dfs) ← 0

6: TCbs(Dbs) ← 0

7: for each di ∈ DI

8: tecfs(di) ← se(di; fs) + re(di; fs)

9: tecbs(di) ← se(di; bs) + re(di; bs)

10: ttdcfs(di) ← std(di; fs) + rtd(di; fs)

11: ttdcbs(di) ← std(di; bs) + rtd(di; bs)

12: tcfs (di) ← 𝐰𝟏
𝐭𝐞𝐜𝐟𝐬 𝐝𝐢

𝐄𝐌𝐚𝐱
+ 𝐰𝟐

𝐭𝐭𝐝𝐜𝐟𝐬 𝐝𝐢

𝐓𝐃𝐌𝐚𝐱

13: tcbs (di) ← 𝐰𝟏
𝐭𝐞𝐜𝐛𝐬 𝐝𝐢

𝐄𝐌𝐚𝐱
+ 𝐰𝟐

𝐭𝐭𝐝𝐜𝐛𝐬 𝐝𝐢

𝐓𝐃𝐌𝐚𝐱

14: if (tcfs(di) ≤ tcbs(di)) then

15: Dfs ← Dfs ∪ {di}

16: TCfs(Dfs) ← TCfs(Dfs) + tcfs(di)

17: send(di ; fs)

18: else

19: Dbs ← Dbs ∪ {di}

20: TCbs(Dbs) ← TCbs(Dbs) + tcbs(di)

21: send(di; bs)

22: end if

23: end for

Output: : Dfs, Dbs, TCfs(Dfs), and TCbs(Dbs).

As a result, by using ADMSSA the mobile device can select

adaptively and dynamically the most appropriate mapping

cloud server for each data item to satisfy the user needs as

minimizing the energy consumption and the time delay of

sending and receiving data to/from the cloud servers.

5. EXPERIMENTAL RESULTS AND

ANALYSIS
This section evaluates the performance of the proposed

method for data mapping selection using ADMSSA algorithm

through comparing it with two mapping methods, FMAP

method: which maps all data items to file server only and,

BMAP method: which maps all data items to block server

only. The OMNet ++ [19] simulator was used to evaluate the

proposed algorithm ADMSSA. Also, each experiment is

repeated 5 times and the average was taken.

5.1 Time Delay Cost
Fig. 4 shows the time delay cost against different number of

data items when the number of mobile hosts is fixed to 2

nodes, the time delay cost increases as number of data items

increases. This is because a large number of data items needs

more time in sending and receiving processes. Also, the time

delay cost for ADMSSA is less than BMAP method and is

larger than FMAP method. This is because block server

mapping needs more time delay cost for classification and

searching in sending and receiving processes and this time

delay cost will be increased in ADMSSA if the number of

mapped data items to block server increases.

Fig. 4. The time delay cost vs. number of data items

Fig. 5. The time delay cost vs. number of mobile nodes

Fig. 5 shows the time delay cost against different number of

mobile hosts when the number of data items is fixed to 25 data

items, the time delay cost increases as number of mobile hosts

increases. This is because the existence of large number of

mobile hosts generates a high number of data items in total.

Therefore, the number of mapped and stored data items in the

file and block servers will increase which will affect on the

time delay cost of sending and receiving processes for each

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.12, June 2016

46

mobile host. Also, the time delay cost for ADMSSA is much

lower than FMAP and BMAP methods. This is because

ADMSSA can select the best mapping server for a fixed

number of generated data items by each mobile host.

5.2 Energy Consumption Cost
Fig. 6 shows the energy consumption cost against different

number of data items when the number of mobile hosts is

fixed to 2 mobile nodes, the energy consumption cost

increases as number of data items increases. This is because a

large number of data items consumes more energy in sending

and receiving processes. Also, the energy consumption cost

for ADMSSA is less than FMAP method and it is noticed to

be larger than BMAP method. This is because file server

mapping consumes more energy consumption cost in sending

and receiving processes and this energy consumption cost will

be increased in ADMSSA if the number of mapped data items

to file server increases.

Fig. 6. The energy consumption cost vs. number of data

items

Fig. 7 shows the energy consumption cost against different

number of mobile hosts when the number of data items is

fixed to 25 data items, the energy consumption cost increases

as number of mobile hosts increases, this is because the

existence of large number of mobile hosts generating a high

number of data items in total. Therefore, the number of

mapped and stored data items in the file and block servers will

increase which will affect on the energy consumption cost of

sending and receiving processes for each mobile host. Also,

the energy consumption cost for ADMSSA is much lower

than FMAP method and is almost the same as BMAP method.

This is because ADMSSA can select the best mapping server

for a fixed number of generated data items by each mobile

host.

Fig. 7. The energy consumption cost vs. number of mobile

nodes

5.3 Total Cost
Figs. 8 and 9 show the total cost which is calculated by

Equations 16 and 17 against different number of data items

and number of hosts, respectively.

Fig. 8 shows the total cost against different number of data

items when the number of mobile hosts is fixed to 2 mobile

nodes, the total cost increases as number of data items

increases and the total cost for ADMSSA is less than FMAP

and BMAP methods which satisfies the required conditions in

Equations (19) and(20).

Fig. 9 shows the total cost against different number of mobile

hosts when the number of data items is fixed and it was 25

data items. As shown in Fig. 9 the total cost increases as

number of data items increases and the total cost for

ADMSSA is much lower than FMAP and BMAP methods

which satisfies the required conditions in Equations 19 and 20.

 Fig. 8. The total cost vs. number of data items

 Fig. 9. The total cost vs. number of mobile nodes

Based on these results, ADMSSA can select the most

appropriate mapping server adaptively and dynamically by

taking into account the time delay and energy costs for each

data items and is much better than FMAP and BMAP

methods.

6. CONCLUSIONS
In this paper, a new data mapping selection algorithm in MCC

called Adaptive Data Mapping Selection Algorithm

(ADMSA) is proposed to solve the data mapping storage

selection problem in mobile cloud computing (MCC) and to

minimize the total energy consumption for data mapping in

MCC. ADMSA constructs a cost model by taking into account

the time delay and energy consumption costs for sending and

retrieving data to/from the cloud servers. Also, many

simulation experiments were conducted to evaluate ADMSSA

by comparing it with the file and block mapping methods. The

simulation results show that the proposed algorithm achieves a

better mapping performance with minimum cost compared to

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.12, June 2016

47

the mapping data items without any selection mechanism. In

the future work, the proposed method will be modified by

adding more metrics in its cost model as data priority or sever

trust. Also, the existence of more than one file and block

server in the cloud side will be studied.

7. ACKNOWLEDGMENTS
I would like to thank Assoc. Prof. Neveen Ghal for her

guidance, efforts, and encouragement. And would like to

express my special thanks of gratitude to my teacher Dr.

Asaad Ahmed Gad-El-Rab who gave me the golden

opportunity to do this work, Without help, this work would

have never been possible now came to know about so many

new things I am really thankful to him.

8. REFERENCES
[1] Lindsay, B.G., Haas, L.M., Mohan, C., Wilms, P.F. and

Yost, R.A.,Computation and communication in R*: a

distributed database manager,. ACM Trans.

Comput.Syst., Vol. 2(1), pp. 24-38 ,1984.

[2] Rothnie Jr., J.B., Bernstein, P.A., Fox, S., Goodman, N.,

Hammer, M.,Landers, T.A., Reeve,C.L., Shipman, D.W.,

Wong, E., Introduction to aSystem for Distributed

Databases (SDD-1), ACM Trans. Database Syst.,Vol

5(1), pp. 1-17, 1980.

[3] Ramandeep Singh Rajpal and RaghvendraKumar,

Secured Communication Model for Mobile Cloud

Computing,International Journal of Computational

Engineering Research (IJCER),Vol. 5(5), 2015

[4] Jin Li, Xiao Feng Chen, Xining Huang, Shaohua Tang

and Yang Xiang,Secure Distributed Deduplication

Systems with Improved Reliability,IEEE Transactions on

Computers, pp. 1-12, 2015.

[5] Jin Li, Yan Kit Li, Xiaofeng Chen, Patrick P.C. Lee and

Wenjing Lou,A Hybrid Cloud Approach for Secure

Authorized Deduplication, IEEEtransactions on parallel

and distributed systems, Vol. 26(5), pp. 1206-1216, 2015.

[6] Mazhar Ali, Kashif Bilal,Samee U.

Khan,BharadwajVeeravalli,KeqinLiand Albert Y.

Zomaya,DROPS:Division and Replication of Data in

Cloudfor Optimal Performance and Security, IEEE

Transactions on CloudComputing, pp. 1-15, 2015.

[7] Jian Liu, Kun Huang, Hong Rong, Huimei Wang, and

Ming Xian,Privacy-Preserving Public Auditing for

Regenerating-Code-Based Cloud Storage,IEEE

Transactions on Information Forensics and Security,Vol.

10(7),2015.

[8] Bernstein, P.A., Hadzilacos, V. and Goodman, N.,

Concurrency Controland Recovery in Database Systems,

Addison Wesley, Reading, assachusetts,1987.

[9] Weikum, G. andVossen, G.,Transactional information

systems: theory,algorithms, and the practice of

concurrency control and recovery,MorganKaufmann

Publishers Inc. ,2001.

[10] Niroshinie Fernando, Seng W. Loke and Wenny Rahayu ,

Mobile cloudcomputing: A survey, Future Generation

Computer Systems, Vol. 29, pp.84 -106, 2013.

[11] Xinwen Zhang and Anugeeth aKunjithapatham, Towards

an ElasticApplication Model for Augmenting the

Computing Capabilities of MobileDevices with cloud

Computing in Mobile NetwAppl, Springer

Science+Business Media, Vol. 16(3), pp. 270 -284, 2011.

[12] Chandra, P. Bahl and Maui, Making smartphones last

longer withcode offload, Proceedings of the 8th

International Conference on MobileSystems,

Applications and Services,MobiSys10, ACM, New York,

NY,USA , pp. 49-62, 2010.

[13] Amazon Web Services (AWS), Available from:

http://aws.amazon.com[Accessed:13th Mar. 2016].

[14] N. Gohring, Amazons S3 down for several hours, Online

at:http://www.pcworld.com/businesscenter/article/14254

9/amazonss3down for several hours.html, 2008.

[15] Mell P and Grance T. , The NIST definition of cloud

computing,National Institute of Standards and

Technology, NIST special publication800-145, 2011.

[16] T. S. J. Schwarz and E. L. Miller, Store, Forget, and

Check: Using Algebraic Signatures to Check Remotely

Administered Storage, Proceedingof ICDCS 06, pp. 12-

12, 2006.

[17] Lindsay, B.G., Haas, L.M., Mohan, C., Wilms, P.F.,

Yost, R.A., Computation and communication in R*: a

distributed database manager, ACM Trans. Comput.Syst.

Vol. 2(1), pp. 24 -38 1984.

[18] Rothnie Jr., J.B., Bernstein, P.A., Fox, S., Goodman, N.,

Hammer, M.,Landers, T.A., Reeve,C.L., Shipman, D.W.

andWong, E., Introduction to aSystem for Distributed

Databases (SDD-1), ACM Trans. Database Syst.,Vol.

5(1), pp. 1-17, 1980.

[19] A. Varga and Andrs, The OMNeT++ Discrete Event

Simulation System,,Proceedings of the European

Simulation Multi-conference (ESM’2001).Prague, Czech

Republic, June 2001.

IJCATM : www.ijcaonline.org

