
International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.13, June 2016

A Comparative Study of Code Offloading Techniques
and Application Partitioning Methods in Mobile Cloud

Computing

Amardeep Kaur
Guru Nanak Dev University

Amritsar, Punjab
India (143505)

Kamaljit Kaur
Guru Nanak Dev University

Amritsar, Punjab
India (143505)

ABSTRACT
Mobile cloud computing allows the execution of
computation-intensive applications of mobile devices in
computational clouds, and this process of executing in
cloud by sending the application VM/Components is called
application/code/component offloading. Offloading is an effective
method to save the execution time and energy consumption
of mobile devices. Thus it extends the battery life of mobile
devices. Applications are first partitioned into offloadable and
non-offloadable components, which are then transferred to remote
server for execution. The objective of this paper is to explore the
different techniques of offloading and application partitioning
methods. These techniques are thoroughly reviewed in this paper.
This paper also highlights the comparison of different techniques
on the basis of their contribution, merits, demerits and also on
the basis of improvement in execution time, energy consumption,
communication time.

Keywords
Application Partitioning, Code Offloading, Mobile cloud
computing, Energy Consumption, Execution Time

1. INTRODUCTION
Today is the era of smart phones. Smart phones have
become necessity in everyone’s life. Smart phone’s capability
of running multiple applications have attracted everyone. But
some computation intensive applications consume lots of energy.
And energy is always a constraint in mobile devices due to
slow development of battery. The execution time of computation
intensive applications in mobile devices is also high. So instead
of the executing such applications locally in mobile devices, some
kind of mechanism is required that helps to reduce execution time
and energy consumption.
One such mechanism given by many researchers is mobile
cloud computing. Mobile cloud computing is a union of
three technologies– mobile internet, mobile computing, cloud
computing[10]. Mobile cloud computing is workable by three
major components: mobile devices(such as smart phones, PDA,
tablets), network technology(such as Wifi, Wimax, 3G, 4G, and
LTE) and cloud(such as Microsoft Azure and AWS).

Mobile cloud computing is set of techniques that use near unlimited
cloud resources to empower mobile applications .i.e. Computation
intensive applications of mobile devices are offloaded to cloud
resources for execution [8].
Offloading the applications to cloud reduces the burden of mobile
devices of executing applications. Offloading helps to preserve
energy consumption in mobile devices and reduce the execution
time. Applications are offloaded and executed in cloud resources
and result are returned back. Offloading the applications to cloud
successfully requires the high network bandwidth and low link
failure rate.
Offloading can be done in two ways– either the application/Virtual
machine is moved to remote server for execution or application is
partitioned into components and components are sent to remote
server for execution. In former way, network cost is high and
when there is requirement to access mobile device sensors,
problem occurs and even energy consumption also exceeds due
to communication. But in latter way, this problem is reduced
as application is partitioned into offloadable and non-offloadable
components. Non-offloadable components are components that
are not suitable for offloading, as they provide graphical user
interface, have to access mobile device sensors, GPS, and network
components.
Application partitioning is a mechanism of splitting up the
application into separate components, also maintaining the
semantics of application. These partitions can independently
operate in distributed environment. The application partitioning is
a prephase of computational offloading. Application Partitioning
can be done in different levels of granularity:Module level,
Method level, Object level, Thread level, Class level, task
level, Component level, etc. Application Partitioning is done
to improve performance, reusing memory constraints, reducing
energy consumption, reducing network overhead, etc.
Energy that code offloading saves depends on the network
bandwidth, the amount of data to be transmitted, and amount of
computations to be performed [18].
The rest of paper is organized as follows: Section 2 shows
Techinques used in code offloading in mobile cloud computing.
Section 3 presents Application partitioning methods. Section
4 talks about Discussion about the research on mobile cloud
computing till 2016 and Section 5 describes Comparison of various
techniques. Section 6 conclude the whole paper.

1

International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.13, June 2016

2. TECHINQUES USED IN CODE OFFLOADING
IN MOBILE CLOUD COMPUTING

2.1 Route based Techniques
—Cloud path selection for offloading based on AHP and

TOPSIS. [35]
(wu et al., 2012)The aim of selecting cloud-path for offloading
is to select the best cloud among the available public clouds
that satisfies the given criteria. This technique is multiple
criteria based that evaluates many criteria such as speed,
bandwidth, price, security, and availability. It makes use of
analytic hierarchy process(AHP) for determining weights of the
criteria for selecting cloud path. And use the TOPSIS algorithm
to get final ranking of available clouds.

—Mapping and Scheduling of TIG for Code Offloading [1]
(balakrishnan et al., 2013)This paper helps to save energy
using Dynamic Voltage and Frequency Scaling(DVFS) during
mapping and scheduling stages. Mapping is assigning a resource
to a task and scheduling is executing tasks at appropriate
operating frequency. Two level genetic algorithm is proposed for
these two stages. Inner level is for scheduling and outer level is
for mapping process. Applications are partitioned to form several
task interaction graphs(TIG), which are offloaded to either cloud
resources or surrogates. The execution of scheduled TIG must be
within global deadlines. This work successfully schedules tasks
with 35 percent energy saving in a mobile device.

2.2 Resource based techniques
There are three types of resources to which code offloading can be
done. These are–public cloud, cloudlet, and mobile adhoc network.
Public cloud such as Amazon, Google, Microsoft azure. Cloudlet
acts as middle layer between mobile devices and cloud. Mobile
adhoc network is a group of mobile devices, forming a device
cloud.

—Context sensitive offloading scheme [39] (zhou et al., 2015)In
this paper, code offloading decision is made to find suitable cloud
resources to which code will be offloaded based on the wireless
network available. Three resources are used in this paper–public
cloud, cloudlet, and Manet. The best wireless interface is also
selected based on six criteria , such as energy cost, link speed,
availability, link quality, monetary cost, and conjunction level of
channel using AHP and TOPSIS algorithm. And then suitable
cloud resource is selected that utilises minimum execution code,
which is estimated using cost estimation model. It achieves
significant performance improvement.

2.2.1 Cloud based techniques

—(Shiraz et al., 2015) [30] In this paper, author has proposed
an offloading framework, that minimises the number of
computation-intensive components, migrated to cloud at
runtime. Thus it reduces the overhead induced by the migration
of components. This framework is examined under three cases.
First, application is made to run on mobile devices, second,
traditional offloading methods are used for execution and third,
proposed offloading technique is used for application execution.
Results of these three cases are compared. Results show that
the proposed technique is energy efficient and saves energy
consumption by 69.9 percent and also reduces data transmission
cost by 84 percent.

—(Chen et al., 2015a) [2] Author has optimised the offloading
decision algorithm for tasks(independent) of mobile devices

using one computing access point and a remote server of cloud.
It reduces the overall cost of energy consumption, execution cost
and delay. It considers the problem formulation as a non-convex
quadratically constrained quadratic program. And to solve this
problem, decision algorithm using semi-definite relaxation and
a randomization mapping methods is proposed. This algorithm
produces optimal performance using computing access point.

—(Pandey et al., 2015) [24] In this paper, author has proposed
a dynamic offloading decision algorithm that uses depth first
search for calculating the offloading point. Offloading point is
calculated at runtime. It uses call-graph. Call graph consists of
nodes, which represents methods. Each node has weight that
represent execution cost and edge weight represent transmission
cost. A call sequence is made from call graph using topological
sorting(DFS). After that linear search is performed on all the
call sequence to find the best beginning and ending offloading
points. This algorithm reduces the energy consumption and
execution time. Results show that the performance of the
proposed algorithm is better as compared to 0-1 ILP approach.
Time complexity of this algorithm is O(E+V).

—(Li et al., 2015) [20] Author has proposed a new approach
that performs method level offloading by migrating only
required context information for application execution, along
with workload. It finds the required memory contexts, before
the execution begins by offline decomposing of the executables
of application. The results of decomposition are stored along
with the executables of application. These results are used
by offloading decision algorithm to migrate only required
context information to remote cloud server. It helps to save the
transmission cost and energy consumption.

—(Chen et al., 2015b) [3] This paper aims to achieve the
efficient computation offloading using game theory. Author has
proposed decentralised computation offloading game, which is
a offloading decision algorithm. In this approach mobile users
can self-arrange themselves to obtain offloading decision in
decentralised system. This self-arranging characteristics helps
to reduce the burden of management of difficult centralised
system (assembling of information from multiple mobile users
and offloading decision by cloud). In this method, first of all,
decentralised computation offloading game is generated, then
game is examined in two wireless accesses cases(homogeneous
and heterogeneous). Game possesses Nash equlibrium in both
the cases. It scales according to the system size.

—(Saab et al., 2015) [27] In this paper, author has proposed a free
sequence protocol that execute the application dynamically using
call graph. It is further extended to include the security measures.
It uses min-cut algorithm for application partitioning. It aims
to solve energy optimization problem. It consists of profiler,
to measure the software and hardware requirements; decision
engine, that provides decision using min-cut maximum flow
algorithm; and android mobile app based on FSP. Results show
that it saves energy consumption and improves performance.

—(Hung et al., 2012)[15] In this paper, author has proposed
mobile application execution framework on clouds. In this
technique application on mobile device is first stopped, then
the data files containing saved state of application are sent to
the cloud and executed in cloud server. Loss of input data is
avoided by integrating application replay technique with a state
saving scheme. The data synchronisation is prioritised by adding
application state saving scheme and categorisation of data. The
application saved state is transferred instead of entire VM. It
reduces the amount of data to be transferred.

2

International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.13, June 2016

—(Verbelen et al.,2012a) [32] in this paper author has introduced
AIOLOS, which is an adaptive offloading decision engine. It is
used to consider the resources available in the cloud and varying
network conditions dynamically in the proposed decision. It
finds location where application partition will be executed by
using estimated execution time at both remote cloud and mobile
device. This algorithm is computation and energy intensive.

2.2.2 Cloudlet based techniques

—(Fesehaye et al., 2012) [9] In this paper author has presented a
design of cloudlet based network and an adaptive decision-based
service architecture. It has cloudlet server and mobile devices
attached with nearer cloudlet. With the wireless links, mobile
devices can exchange information with other mobile devices
and server within the network. Using the centralised and
distributed approaches two new forwarding algorithms are
introduced. Distributed routing algorithm cloudlet carry out
routing distributively using local information. In centralised
routing algorithm, cloudlet sends its own ID and ID of each
attached mobile device to centralised server. Then server
generate route by computing and sends it back.

—(Verbelen et al., 2012b) [33] author has presented a fine grained
dynamic cloudlet based approach. Any computer system in LAN
with accessible required resources is made a cloudlet. Dynamic
cloudlet deal with the shortcomings of static cloudlet .i.e.
Requirement of deploying a cloudlet infrastructure in LAN by
the service provider. This limitation was alleviated by dynamic
cloudlet.

—(Gordon et al., 2012) [13] In this paper author has proposed
a mechanism to send the multi-threaded applications to nearby
servers which is called COMET. It makes use of the machine
workload to make decision of thread migration. It is able to
migrate any number of threads by using distributed shared
storage technique.

2.3 Proxy Based Techniques [16]
(kaya et al., 2016)The proxies of requested classes are created and
managed by the offloading factory. Offloading factory manages
resource accesses between the cloud and mobile device at runtime.
Proxies are created for each offloadable object, and method call
is sent to the objects placed in remote server by the offloading
factory. Unique Id is associated to the object on server side. If
the objects on server side needs the resources of mobile devices
then proxies are created that will point to the resources in mobile
devices. By creating proxies of all remote resources, offloading
factory manages the coordination of access to resources.

3. APPLICATION PARTITIONING METHODS
Application partitioning is pre-offloading process that helps
to partition the application. It split up the applications into
separate components, maintaining the semantics of application.
Each component is able to execute independently in distributed
environment. Partitioning is usually done based on graphs. Call
graph is generated according to the sequence how the methods
call each other. In the same way several graphs are generated in
different applications partitioning algorithms according to the level
of granularity used such as module level, method level, object level,
class level, task level, thread level, component level, etc. [21] .
And partitioning can be static(predefined during development) or
dynamic (based on runtime conditions).

—Graph partitioning algorithm based on input complexity
metrics [25] (Pedrosa et al., 2012) Author has proposed a
partitioning algorithm based on graph. Application is converted
into a graph and then decision is made for partitioning the
graph. Complexity metrics are used in this paper to help
in predicting the usage of resources by the components of
the application. Each component’s input (general purpose
and application-specific inputs) properties are used to
make prediction. These algorithms can easily extend to new
application specific of user defined input complexity metrics.
It also possesses the property of modularity. This algorithm
optimizes the application execution and saves 21 percent on
power consumption.

—Dynamic partitioning approach [11] (Giurgiu et al., 2012) In
this paper, application is partitioned optimally using following
parameters: device’s CPU load, network conditions, and user
inputs. Some components are to be run on cloud and other
on mobile devices. Application structure, requirements of
resources, and device constraints are profiled continuously. It
is a dynamic partitioning approach. After profiling, current
application deployment is dynamically reconfigured according
to the changes in the network conditions, device CPU load,
and user input. It provides 75 percent of performance gain and
reduces energy consumption by 45 percent.

—Bandwidth adaptive partitioning [23] (Niu et al., 2014) In
this paper, static application partitioning approach is enhanced
using weighted object relational graphs to avoid the overheads
of dynamic partitioning. Application partitioning is optimised
by combining static analysis and dynamic profiling in relational
graphs. Author has proposed three methods, each having
different objectives regarding the optimization of execution time,
optimization of energy and their combination. Bandwidth is
considered an important parameter that helps in minimising
the compromise between energy and time savings, taking in
account transmission costs and delay. For small and large
scale applications, two application partitioning algorithms are
proposed by the author. This approach helps in reducing energy
consumption and execution time.

—Partitioning algorithm for data stream applications [36]
(Yang et al., 2013) In this paper, author has proposed application
partitioning algorithm using data flow graph. It makes use of
genetic algorithm for increasing the application throughput.
This approach provides dynamic partitioning and computation
requirements are shared among multiple users in cloud.
Cloud resources are efficiently used. It is scalable approach.
Partitioning algorithm is executed in cloud. It provides high
performance improvement.

—ACO based graph partitioning algorithm [28] (sachdeva et
al., 2015) In this technique, ant colony optimisation (ACO)
is used to find the shortest route between remote cloud and
mobile device, and also to partition graph. If first initialises and
deploy graph G(V,E) and then apply Ant colony optimisation
to partition graph. The updation in pheromones is done using
optimal solution and is iterated until a fulfilling solution is
obtained and stop condition is applied.

— Linear time heuristic for partitioning a graph [16] (kaya et
al., 2016)Linear time heuristic for graph partitioning is proposed
by FM(fiduccia and mattheyses 1982) so called FM heuristic.
In FM heuristic for graph partition, graph min-cut algorithm
is given. The best offloading decision is generated based on
weights of edges and vertices. FM heuristic only use edge weight
for estimating gain. In this algorithm, first offload able classes are

3

International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.13, June 2016

identified and then next step is to find vertex with best offloading
gain. This vertex is then moved to another partition. This is
repeated until no better partition is obtained.

— Improved (K+1) coarse partition algorithm [26] (qin et
al., 2012)Improved (K+1) coarse partition algorithm is used to
partition cost graph. Coarse partition algorithm is improved to
include the concept of context awareness. Computing resources,
battery power, sensing ability, network connection , all represent
context of mobile device. Input and context information is passed
to partition module, and application is partitioned and executed
But if during the process context changes, then partitioning is
performed again to achieve context awareness.

—Graph partitioning algorithm [34]
(verbelen et al., 2013)This partitioning algorithm is used for
allocating the components of applications to remote server in
public cloud. It minimises the required bandwidth between the
components of application, but does not minimise execution
time of tasks. It generates partition based on infrastructure
heterogeneity using multilevel KL based algorithm. It uses
the combination of simulated annealing(SA) algorithm and
multilevel (MLKL) graph partitioning algorithm to generate
hybrid partitioning algorithm. This combination addresses the
issue of randomness of simulated annealing. The important
aspect of this algorithm is that a better solution is doing with
simulated annealing at coarsest level o shortest time and extra
computation cost remains low. This hybrid algorithm also makes
sure that no cloud server gets overloaded.

4. DISCUSSION
On analysing the research done on mobile cloud computing, it
is determined that mobile cloud computing has undergone an
evolution, starting from the year 2009 till now. Many researchers
have provided improvements, new techniques and new methods
that led to this evolution. This evolution can be apparently known
from the figure 1. This figure 1 has shown how improvements and
new techniques evolved according to the year of publication. The
berief introduction of the techniques in figure 1 are summarized as
follows:
(Liu et al.,2009)[22] Instead of scheduling tasks, scheduling of
ubiquitous mobile service cell [17] is done to the adjustable server
in cloud using genetic algorithm. (Chun et al.,2009) [5] It provides
the execution of application in smartphones, offloaded to the
clonecloud, a group of smart phones. After executing application
on clonecloud, result is sent back to the smart phones. (Giurgiu
et al., 2009) [12] Application is represented in the form of data
flow graph showing interactions between different modules. Two
partitioning algorithms are proposed: ALL and K-Step, to partition
the graph in offline mode and during device’s connection with
the server. (Zhang et al., 2009) [38] Elastic application comprises
one or more weblets, that operate independent of each other. The
computation-intensive weblets are migrated from mobile devices
to cloud server for execution and other weblets that require
the resources of mobile devices are executed on mobile device.
(Satyanarayan et al.,2009) [29] Author introduced the concept of
cloudlets. In this framework, mobile device send its workload to a
nearby cloudlet, which consists of various resource rich computers,
that are connected to remote cloud server. (La et al.,2010) [19]
Author proposed a newframework that provides context aware
mobile services. (Chun et al., 2010) [6] It provides application
partitioning between device and cloud dynamically and it faces the
issue of heterogeneity. Dynamic application partitioning also deals
with the shortcomings of static application partitioning. (Cuervo

et al.,2010) [7] It provides a framework, MAUI that considers
energy efficiency while offloading code to the remote server for
execution. It ia a fine grained offloading approach that reduces
the burden on programmer of updating the application. (Stuedi
et al., 2010) [31] Author proposed Wherestore, a position based
data storage for mobile devices connected with the cloud. Position
history of mobile devices is used to find out the data that is to
be replicated locally. (Huang et al., 2010) [14] It provides a new
framework, Mobicloud, that amplifies the behaviour of mobile
adhoc network, MANET by considering mobile devices as service
points. Communication is augmented by using trust management,
risk management, and secure routing in the network. (Kumar et
al., 2010) [18] Offloading code from mobile devices to public
cloud server reduces the energy consumption of mobile devices.
(Zhang et al., 2011) [37] An elastic application is partitioned
into one or more component, called weblets, that can be either
platform-dependent or platform-independent. It provides dynamic
execution of these weblets either on cloud or on mobile device
locally, according to the status of device. (Chun et al., 2011) [4]
Author designed a system, called clonecloud, that modifies the
application of mobile device automatically , for execution in cloud
environment. Application is automatically partitioned using fusion
of static analysis and dynamic profiling.
The research after 2011,(i.e. 2012 onwards till 2016) is already
discussed in the sections of ”Techinques used in code offloading in
mobile cloud computing” and ”Application Partitioning methods”.

5. COMPARISON OF VARIOUS TECHNIQUES
The techniques of offloading and application partitioning are
compared in table 1, table 2, table 3, and table 4. In table 1, all
offloading techniques are compared based on their contribution,
merits and demerits. In table 2, all application partitioning
methods are compared based on their contribution, merits and
demerits. In table 3, all offloading techniques are compared
based on the improvement in execution time, energy consumption,
communication time and whether the decision algorithm is simple
or complex. In table 4, all application partitioning methods are
compared based on the improvement in execution time, energy
consumption, communication time and whether the decision
algorithm is simple or complex.

6. CONCLUSION
In this paper, a survey is provided on various techniques
of code offloading and application partitioning methods. The
code offloading techniques help in saving execution time and
energy consumption in mobile devices. These techniques are
compared on the basis of their contribution, merits, demerits
and also on the basis of improvement in execution time, energy
consumption, communication time. Different techniques shows
different improvements based on the above parameters. The Survey
of different offloading techniques and application partitioning
methods show that there is no technique that improves all
the parameters .i.e. Execution time, Energy consumption and
Communication cost. As a future scope new technique should be
designed that improves all the parameters, considering different
wireless networks(Wifi, 3G, 4G,.etc.).

7. REFERENCES
[1] Pranav Balakrishnan and Chen-Khong Tham.

Energy-efficient mapping and scheduling of task interaction
graphs for code offloading in mobile cloud computing.

4

International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.13, June 2016

2009

2010

2011

2012

2013

2014

2015

2016

[Liu et al][23] [Abstraction over mobile agent and provides scheduling

of mobile service cell in mobile cloud using genetic algorithm]

[Chun et al][5] [Offloading execution from smart phone to clone cloud

i.e. cloud smart phones]

[Giurgiu et al][12] [Application represented as graph and partitioned

using two algorithms: ALL and K-step.]

[Zhang et al][39] [Elastic application comprises weblets, which are

migrated between device and cloud for execution securely.]

[Satyanarayan et al][30] [Cloudlet based, resource rich, mobile

computing]

 [La et al][19] [Context aware mobile services]

[Chun et al][6] [Dynamic application partitioning between weak devices and

clouds]

[Cuervo et al][7] [MAUI, energy-aware offload of mobile code to

infrastructure]

[Stuedi et al][32] [Wherestore, a location based data store for smartphones

interacting with the cloud]

[Huang et al][14] [Mobicloud, mobile cloud framework for MANET]

[Kumar et al][18] [Prove that computation offloading saves energy]

 [Zhang et al][38] [Application partitioned into weblet and dynamic weblet

execution either on cloud or on mobile device]

[Chun et al][4] [Clonecloud, offloading segment of application workload to

device clones in cloud for execution]

[Wu et al][36] [Multiple criteria based offloading decision algorithm using AHP
and TOPSIS.]
[Pedrosa et al.][26] [Graph partitioning algorithm based on input complexity
metrics.]
[Giurgiu et al][11] [Partitioning approach that reconfigure the application
deployment acc. to changes in given parameters]
[Verbelen et al][33] [AIOLOS adaptive decision engine.]
[Fesehaye et al][9] [Cloudlet based network of an adaptive decision based
service architecture.]
[Gordon et al][13] [COMET MIgrating multi-threaded applications to cloudlet
a, locally available servers.]

[Balakrishnan et al][1] [Energy efficient mapping and scheduling of TIG
for code offloading in MCC using two level genetic algorithm.]
[Verbelen et al][35] [Graph partitioning algorithm for the allocation of
components to the server in cloud.]
[Yang et al][37] [Partitioning algorithm for data stream applications
using genetic algorithm]

[Niu et al][24] [Application Partitioning algorithm using weighted object
relational graphs.]

[kaya et al][16] [Proxy based offloading decision and graph min-cut
algorithm for graph partitioning.]

[Zhou et al][41] [Context aware offloading decision algorithm.]
[Shiraz et al][31] [Offloading framework that minimises the number
of computation-intensive components migrated to cloud at runtime.]
[Chen et al][2] [Offloading decision algorithm using computing access
point.]
[Pandey et al][25] [Offloading decision algorithm based on DFS and
linear search.]
[Saab et al][28] [Free sequence protocol is proposed to execute the
application dynamically using call graph. Also provides security
measures.]

Development in

the techniques

of mobile cloud

computing

starting from

the year 2009

till 2016.

Fig. 1. Development in the technology of mobile cloud computing starting from the year 2009 till 2016.

5

International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.13, June 2016

Table 1. COMPARISON OF VARIOUS TECHNIQUES OF OFFLOADING ON THE BASIS OF THEIR MERITS AND
DEMERITS

s no Papers year Contribution Merits Demerits

1 Wu et al. [35] 2012 Multiple criteria based offloading decision
algorithm using AHP and TOPSIS.

it evaluates multiple criteria, such as speed,
bandwidth, security,price and availability in
selection process.

it does not reduce energy consumption.

2 Balakrishnan et al. [1] 2013 Energy efficient mapping and scheduling of
TIG for code offloading in MCC using two
level genetic algorithm.

It saves 5 percent of energy saving in mobile
devices.

It does not reduce the execution time and
also faces high communication cost.

3 Zhou et al. [39] 2015 Context aware offloading decision
algorithm.

It reduces the execution time and energy
consumption.

No mechanism for device failure tolerance.

4 Hung et al. [15] 2012 A cloud based mobile application execution
framework.

It reduces the amount of data transfer by only
transferring the application saved states and
not the entire VM.

It faces delay due to runtime agent program
installation, VM creation and states
migration.

5 Verbelen et al. [32] 2012a AIOLOS adaptive decision engine. It is a dynamic approach that considers the
available resources of server and varying
network conditions in offloading decision.

This adaptive offloading algorithm is
compute- and energy- intensive.

6 Fesehaye et al. [9] 2012 Cloudlet based network of an adaptive
decision based service architecture.

The performance of cloudlet based approach
is better than cloud based approach.

It suffers from a the initial delays because of
service delivery, mobile user authentication
and process of joining.

7 Verbelen et al. [33] 2012b Fine grained dynamic cloudlet approach. It is a dynamic cloudlet approach which
eliminates the limitations of static cloudlet
approach. Each cloudlet device share
resources dynamically.

It does not provide optimal task mapping.

8 Gordon et al. [13] 2012 COMET MIgrating multi-threaded
applications to cloudlet a, locally available
servers.

It provides the data consistency across end
systems using distributed shared memory
and can migrates any number of threads.

It imposes synchronisation overhead across
end points.

9 kaya et al. [16] 2016 Proxy based offloading decision and graph
min-cut algorithm for graph partitioning.

Distribution transparency of offloading and
developer need not change the program
structure. It reduces execution time and
energy consumption.

It has no mechanism for fault tolerance.
This offloading becomes counterproductive
if sending classes to remote server have
higher network cost than executing them on
mobile.

10 Shiraz et al. [30] 2015 Offloading framework that minimises
the number of computation-intensive
components migrated to cloud at runtime.

It reduces transmission cost by 84 percent
and energy consumption cost by 69.9
percent.

It does not consider the problem of
consistency when applications are executed
simultaneously between mobile devices and
remote server.

11 Chen et al. [2] 2015a Offloading decision algorithm using
computing access point.

It helps to reduce the cost of energy
consumption, execution cost and delay.

It does not consider the communication cost.

12 Pandey et al. [24] 2015 Offloading decision algorithm based on DFS
and linear search.

It is better approach than 0-1 ILP. It reduces
execution time and energy consumption.

Communication cost is not considered.

13 Li et al. [20] 2015 Method level offloading technique that
sends only required context information for
application along with workload.

It saves energy consumption and
transmission cost due to least context
migration. It keeps offloading effective.

It imposes overhead due to extra time spent
on finding the context that is to be migrated.

14 Saab et al. [27] 2015 Free sequence protocol is proposed to
execute the application dynamically using
call graph. Also provides security measures.

It saves energy consumption and improves
performance.

It does not consider the execution time and
communication cost of application.

15 Chen et al. [3] 2015b Decentralised computation offloading
decision algorithm using game theory.

This mechanism is efficient and scales as the
system size increases.

It does not handle problem of user mobility.

Table 2. Comparison of application partitioning methods on the basis of their merits and demerits
s no Papers year Contribution Merits Demerits

1 Sachdeva et al. [28] 2015 ACO based application partitioning
algorithm.

It finds the best deployment solution for
MCC. It improves the QoS parameters of
MCC.

It does not consider executive time and
energy consumption.

2 Qin et al. [26] 2012 Improved (k+1) coarse partition algorithm
with context awareness.

It provides good performance in different
input and network conditions.

No mechanism for fault tolerance, data
security and data synchronisation.

3 Verbelen et al. [34] 2013 Graph partitioning algorithm for the
allocation of components to the server in
cloud.

It minimises the required bandwidth and is
dynamic approach.

It does not consider the execution time
metric.

4 Pedrosa et al. [25] 2012 Graph partitioning algorithm based on input
complexity metrics.

It optimises execution time and saves 21
percent of energy consumption.

It needs programmer’s efforts to modify the
application.

5 Giurgiu et al. [11] 2012 Partitioning approach that reconfigure the
application deployment according to the
changes in given parameters.

It provides 75 percent performance gain and
45 percent savings in energy consumption. It
is resource efficient.

Applications in this approach needs to be
modular. This approach require accurate
results of application execution and data
transfer before partitioning.

6 Niu et al. [23] 2014 Application Partitioning algorithm using
weighted object relational graphs.

It provides reduction in energy consumption
and execution time.

This approach is applicable for only specific
situations.

7 Yang et al. [36] 2013 Partitioning algorithm for data stream
applications using genetic algorithm

It provides improvement in performance and
high throughput. This approach is scalable.

It is not applicable for batch computation
systems.

6

International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.13, June 2016

Table 3. Comparison of various techniques of offloading on the basis of the improvement in
execution time , energy consumption and communiation cost.

s no Papers Year Execution Time Energy Consumption Communication Cost Offloading decision

1 Wu et al.[35] 2012 X X Simple

2 Balakrishnan et al.[1] 2013 X Complex

3 Zhou et al. [39] 2015 X X Simple

4 Hung et al.[15] 2012 X Simple

5 Verbelen et al.[32] 2012a Complex

6 Fesehaye et al [9] 2012 Simple

7 Verbelen et al. [33] 2012b X Simple

8 Gordon et al. [13] 2012 Complex

9 Shiraz et al [30] 2015 X X Complex

10 Chen et al. [2] 2015a X X Complex

11 Pandey et al.[24] 2015 X X Simple

12 Li et al. [20] 2015 X X Complex

13 Saab et al. [27] 2015 X Simple

14 Chen et al. [3] 2015b X X Complex

Table 4. Comparison of Application partitioning methods on the basis of the improvement in
execution time , energy consumption and communiation cost

s no Papers Year Execution Time Energy Consumption Communication Cost Offloading decision

1 kaya et al. [16] 2016 X X Complex

2 Sachdeva et al. [28] 2015 Simple

3 Qin et al.[26] 2012 X Simple

4 Verbelen et al. [34] 2013 X X Complex

5 Pedrosa et al. [25] 2012 X X Complex

6 Giurgiu et al. [11] 2012 X Complex

7 Niu et al. [23] 2014 X X Complex

8 Yang et al. [36] 2013 X Simple

In Proceedings of the 2013 IEEE/ACM 6th International
Conference on Utility and Cloud Computing, pages 34–41.
IEEE Computer Society, 2013.

[2] Meng-Hsi Chen, Ben Liang, and Min Dong. A semidefinite
relaxation approach to mobile cloud offloading with
computing access point. In Signal Processing Advances
in Wireless Communications (SPAWC), 2015 IEEE 16th
International Workshop on, pages 186–190. IEEE, 2015a.

[3] Xu Chen. Decentralized computation offloading game for
mobile cloud computing. Parallel and Distributed Systems,
IEEE Transactions on, 26(4):974–983, 2015b.

[4] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur
Naik, and Ashwin Patti. Clonecloud: elastic execution
between mobile device and cloud. In Proceedings of the
sixth conference on Computer systems, pages 301–314. ACM,
2011.

[5] Byung-Gon Chun and Petros Maniatis. Augmented
smartphone applications through clone cloud execution.
In HotOS, volume 9, pages 8–11, 2009.

[6] Byung-Gon Chun and Petros Maniatis. Dynamically
partitioning applications between weak devices and clouds.
In Proceedings of the 1st ACM Workshop on Mobile Cloud
Computing & Services: Social Networks and Beyond, page 7.
ACM, 2010.

[7] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec
Wolman, Stefan Saroiu, Ranveer Chandra, and Paramvir
Bahl. Maui: making smartphones last longer with code
offload. In Proceedings of the 8th international conference

on Mobile systems, applications, and services, pages 49–62.
ACM, 2010.

[8] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu.
Mobile cloud computing: A survey. Future Generation
Computer Systems, 29(1):84–106, 2013.

[9] Debessay Fesehaye, Yunlong Gao, Klara Nahrstedt, and
Guijun Wang. Impact of cloudlets on interactive mobile cloud
applications. In Enterprise Distributed Object Computing
Conference (EDOC), 2012 IEEE 16th International, pages
123–132. IEEE, 2012.

[10] Keke Gai, Meikang Qiu, Hui Zhao, Lixin Tao, and Ziliang
Zong. Dynamic energy-aware cloudlet-based mobile cloud
computing model for green computing. Journal of Network
and Computer Applications, 59:46–54, 2016.

[11] Ioana Giurgiu, Oriana Riva, and Gustavo Alonso. Dynamic
software deployment from clouds to mobile devices. In
Middleware 2012, pages 394–414. Springer, 2012.

[12] Ioana Giurgiu, Oriana Riva, Dejan Juric, Ivan Krivulev, and
Gustavo Alonso. Calling the cloud: enabling mobile phones
as interfaces to cloud applications. In Middleware 2009, pages
83–102. Springer, 2009.

[13] Mark S Gordon, D Anoushe Jamshidi, Scott Mahlke,
Z Morley Mao, and Xu Chen. Comet: Code offload by
migrating execution transparently. In Presented as part of the
10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 12), pages 93–106, 2012.

[14] Dijiang Huang, Xinwen Zhang, Myong Kang, and Jim
Luo. Mobicloud: building secure cloud framework for

7

International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.13, June 2016

mobile computing and communication. In Service Oriented
System Engineering (SOSE), 2010 Fifth IEEE International
Symposium on, pages 27–34. Ieee, 2010.

[15] Shih-Hao Hung, Chi-Sheng Shih, Jeng-Peng Shieh,
Chen-Pang Lee, and Yi-Hsiang Huang. Executing mobile
applications on the cloud: Framework and issues. Computers
& Mathematics with Applications, 63(2):573–587, 2012.

[16] Mahir Kaya, Altan Koçyiğit, and P Erhan Eren. An adaptive
mobile cloud computing framework using a call graph based
model. Journal of Network and Computer Applications,
65:12–35, 2016.

[17] Phyoung Jung Kim and Young Ju Noh. Mobile agent system
architecture for supporting mobile market application service
in mobile computing environment. In Geometric Modeling
and Graphics, 2003. Proceedings. 2003 International
Conference on, pages 149–153. IEEE, 2003.

[18] Karthik Kumar and Yung-Hsiang Lu. Cloud computing for
mobile users: Can offloading computation save energy?
Computer, (4):51–56, 2010.

[19] Hyun Jung La and Soo Dong Kim. A conceptual framework
for provisioning context-aware mobile cloud services. In
Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pages 466–473. IEEE, 2010.

[20] Yong Li and Wei Gao. Code offload with least context
migration in the mobile cloud. In Computer Communications
(INFOCOM), 2015 IEEE Conference on, pages 1876–1884.
IEEE, 2015.

[21] Jieyao Liu, Ejaz Ahmed, Muhammad Shiraz, Abdullah
Gani, Rajkumar Buyya, and Ahsan Qureshi. Application
partitioning algorithms in mobile cloud computing:
Taxonomy, review and future directions. Journal of Network
and Computer Applications, 48:99–117, 2015.

[22] Qingfeng Liu, Xie Jian, Jicheng Hu, Hongchen Zhao,
and Shanshan Zhang. An optimized solution for mobile
environment using mobile cloud computing. In Wireless
Communications, Networking and Mobile Computing, 2009.
WiCom’09. 5th International Conference on, pages 1–5.
IEEE, 2009.

[23] Jianwei Niu, Wenfang Song, and Mohammed Atiquzzaman.
Bandwidth-adaptive partitioning for distributed execution
optimization of mobile applications. Journal of Network and
Computer Applications, 37:334–347, 2014.

[24] Vikas Pandey, Shashank Singh, and Shashikala Tapaswi.
Energy and time efficient algorithm for cloud offloading
using dynamic profiling. Wireless Personal Communications,
80(4):1687–1701, 2015.

[25] Luis D Pedrosa, Nupur Kothari, Ramesh Govindan, Jeff
Vaughan, and Todd Millstein. The case for complexity
prediction in automatic partitioning of cloud-enabled mobile
applications. Small, 20:25, 2012.

[26] Zhuoran Qin, Jixian Zhang, and Xuejie Zhang. An effective
partition approach for elastic application development on
mobile cloud computing. In Advances in Grid and Pervasive
Computing, pages 46–53. Springer, 2012.

[27] Salwa Adriana Saab, Farah Saab, Ayman Kayssi, Ali Chehab,
and Imad H Elhajj. Partial mobile application offloading
to the cloud for energy-efficiency with security measures.
Sustainable Computing: Informatics and Systems, 8:38–46,
2015.

[28] Shivani Sachdeva and Kamaljit Kaur. Aco based graph
partitioning algorithm for optimistic deployment of software
in mcc. In Innovations in Information, Embedded and
Communication Systems (ICIIECS), 2015 International
Conference on, pages 1–5. IEEE, 2015.

[29] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres,
and Nigel Davies. The case for vm-based cloudlets in mobile
computing. Pervasive Computing, IEEE, 8(4):14–23, 2009.

[30] Muhammad Shiraz, Abdullah Gani, Azra Shamim,
Suleman Khan, and Raja Wasim Ahmad. Energy efficient
computational offloading framework for mobile cloud
computing. Journal of Grid Computing, 13(1):1–18, 2015.

[31] Patrick Stuedi, Iqbal Mohomed, and Doug Terry. Wherestore:
Location-based data storage for mobile devices interacting
with the cloud. In Proceedings of the 1st ACM Workshop on
Mobile Cloud Computing & Services: Social Networks and
Beyond, page 1. ACM, 2010.

[32] Tim Verbelen, Pieter Simoens, Filip De Turck, and
Bart Dhoedt. Aiolos: Middleware for improving mobile
application performance through cyber foraging. Journal of
Systems and Software, 85(11):2629–2639, 2012a.

[33] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart
Dhoedt. Cloudlets: bringing the cloud to the mobile user. In
Proceedings of the third ACM workshop on Mobile cloud
computing and services, pages 29–36. ACM, 2012b.

[34] Tim Verbelen, Tim Stevens, Filip De Turck, and Bart Dhoedt.
Graph partitioning algorithms for optimizing software
deployment in mobile cloud computing. Future Generation
Computer Systems, 29(2):451–459, 2013.

[35] Huaming Wu, Qiushi Wang, and Katinka Wolter. Methods of
cloud-path selection for offloading in mobile cloud computing
systems. In Cloud Computing Technology and Science
(CloudCom), 2012 IEEE 4th International Conference on,
pages 443–448. IEEE, 2012.

[36] Lei Yang, Jiannong Cao, Yin Yuan, Tao Li, Andy Han, and
Alvin Chan. A framework for partitioning and execution of
data stream applications in mobile cloud computing. ACM
SIGMETRICS Performance Evaluation Review, 40(4):23–32,
2013.

[37] Xinwen Zhang, Anugeetha Kunjithapatham, Sangoh Jeong,
and Simon Gibbs. Towards an elastic application model for
augmenting the computing capabilities of mobile devices
with cloud computing. Mobile Networks and Applications,
16(3):270–284, 2011.

[38] Xinwen Zhang, Joshua Schiffman, Simon Gibbs, Anugeetha
Kunjithapatham, and Sangoh Jeong. Securing elastic
applications on mobile devices for cloud computing. In
Proceedings of the 2009 ACM workshop on Cloud computing
security, pages 127–134. ACM, 2009.

[39] Bowen Zhou, Amir Vahid Dastjerdi, Rodrigo N Calheiros,
Satish Narayana Srirama, and Rajkumar Buyya. A context
sensitive offloading scheme for mobile cloud computing
service. In Cloud Computing (CLOUD), 2015 IEEE 8th
International Conference on, pages 869–876. IEEE, 2015.

8

	Introduction
	 Techinques used in code offloading in mobile cloud computing
	Route based Techniques
	Resource based techniques
	Cloud based techniques
	Cloudlet based techniques

	 Proxy Based Techniques kaya2016adaptive

	 Application partitioning methods
	Discussion
	Comparison of various techniques
	Conclusion
	References

