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ABSTRACT
A precise solution of a mathematical model of a mass connected to
an elastic wire is being given in this work. The Optimal Homotopy
Asymptotic Method is applied to solve this conventional model.
Also, comparison with other numerical methodologies and its ex-
act solution will be given for distinct amplitude of oscillations and
compliance can be observed. Results suggest that this technique is
useful for solving non-linear oscillatory system quite easily. The
solution procedure confirm that this method can be easily extended
to other kinds of non-linear oscillators.
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1. INTRODUCTION
Consider, a mass connected to a strained elastic wire then the non-
dimensional equation of its motion be [2].

u
′′
(t) + u(t)− λu(t)√

1− u2(t)
= 0; 0 < λ ≤ 1 (1)

with u(0) = A and u
′
(0) = 0. Consider this an example of an

irrational elastic item placed in a conservative nonlinear oscillatory
system. The vacillation of this system is between [−A,A] i.e.
symmetric bounds , and its angular frequency along with its
corresponding periodic solution depends upon the amplitude A.

This problem has been addressed by many a scientist. Nonetheless,
deriving an analytical solution for it in a detailed form seems
improbable except in some unique situations, such as [1] by
combining Newton’s and harmonic balance technique derived the
approximated analytical solution for non dimensional equation
(1). Ergo, one has to choose numerical methods or approximate
approaches to obtain its solution.In [3] a good approximation to

Eq.(1) is shown by using parameter-expansion method prsented
by He. [4] calculated another approximate solution of Eq.(1)
using VIM and energy balance method. Whereas, [5, 6] used
homotopy perturbation and energy balance method to approximate
the oscillator (1). Geng [7] studied the behavior of a nonlinear os-
cillator of a mass connected to a strained elastic wire by Piecewise
Variational Iteration Method on a massive region, but [7] analyzed
that by using standard Variational Iteration Method (VIM) better
approximation can be obtained in a fairly small region.

In [8] a new technique by Marinca and Herisanuin is being
introduced i.e. Optimal Homotopy Asymptotic Method (OHAM).
Difference between OHAM and HAM is that OHAM is more flex-
ible and has implicit convergence criteria. Several studies [9–17]
have proved the efficiency, wide spread application and reliability
of this method and have used it to obtain solutions of current
important problems in the fields of science and engineering.Work
presented in this paper signify that OHAM is the most reliable
technique to determine the approximated solution of cases like
Eq.(1). In this work, to show the accuracy and efficiency of OHAM
some numerical examples have been solved with distinct ampli-
tudes. The error analysis of the example confirms the convergence
and stability of this technique.

This paper has four sections. Section 2 is about the basic
concept of OHAM. In Section 3, OHAM is applied to the math-
ematical model of non-linear oscillator of a mass connected to
a strained elastic wire. Section 4 contains the conclusion and
discussion of paper.

2. BASIC PRINCIPLES OF OPTIMAL HOMOTOPY
ASYMPTOTIC METHOD

Consider LIN be the linear function operator, NON be the non-
linear function operator, C be the boundary operator, f(x) be the
known function and u(x) be the unknown function then the non-
linear oscillatory differential equation becomes

1



International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.2, June 2016

LIN

(
y(x)

)
+ f(x) +NON

(
y(x)

)
= 0; C

(
y,
dy

dx

)
= 0 (2)

On applying OHAM Eq.(2) becomes

(1−q)[LIN (y(x, g))+f(x)] = M(g)[LIN (y(x, g))+f(x)+NON (y(x, g))]
(3)

and

C
(
y,
dy

dx

)
= 0

where g ∈ [0, 1] is the implanted parameter, y(x, g) is an unknown
function,M(0) = 0 andM(g) be a non-zero auxiliary function for
g 6= 0. The solution y(x, g) varies from y◦(x) to the solution y(x),
as g increases from zero to one, also for g = 0, y◦(x) is obtained
from Eq.(3)

LIN (y◦(x)) + f(x) = 0; C
(
y◦,

dy◦
dx

)
= 0 (4)

LetM(g) =
∑
i=1

cig
i, where ci are constants. Consider the solution

of Eq.(3) in the form

y(x; g, ci) = y◦(x) +
∑
k≥1

yk(x, ci)g
k; i = 1, 2, 3, ... (5)

By replacing, Eq.(5) in Eq.(3) and comparing the coefficients of
same powers of g, the governing equations of y◦(x) and yk(x) are
obtained i.e.

LIN

(
y1(x)

)
= c1(NON )◦(y◦(x)); C

(
y1,

dy1
dx

= 0
)

LIN

(
yk(x)− yk−1(x)

)
=ck(NON )◦(y◦(x) +

k−1∑
i=1

[
LIN (yk−i(x)+

(NON )k−i(y◦(x), y1(x), ..., yk−1(x)
]
;

C
(
yk,

dyk
dx

)
, k = 2, 3, ...

(6)

By expanding NON

(
y(x; g, ci)

)
, for i = 1, 2, 3, ...

in the form of series with respect to g becomes(
(NON )m(y◦(x), y1(x), ..., ym(x)

)
i.e. the coefficient of g;

NON

(
y(x; g, ci)

)
= (NON )◦

(
y◦(x)

)
+
∑
k≥1

(NON )m(y◦, y1, y2, ..., ym)gm

(7)
As y(x; g, ci) obtained in Eq. (5). It has to be enunciate for k ≥ 0,
yk are conducted by linear Eqs. (4) and (6), having linear boundary
conditions provided in the original problem, that can be solved
quickly. Convergence of Eq. (5) confide in the auxiliary constant
c1, c2, c3, .... Therefore, if (5) converges at g = 1, it becomes

y(x, ci) = y◦(x) +
∑
k=1

yk(x, ci)

In general terms, the approximate solution of Eq. (1) is obtained as

Table 1. Different values of angular frequency
and constant for various values of amplitude.

λ A Ω c1

0.1

0.1 0.948887 0.115588
1 0.961132 0.120648

10 0.993738 0.098365
100 0.999366 0.093508

0.5

0.1 0.708427 0.210263
1 0.786663 0.253672

10 0.968277 0.108473
100 0.996826 0.094908

0.75

0.1 0.502795 0.430277
1 0.654292 0.521535

10 0.952011 0.115744
100 0.995234 0.095798

0.95

0.1 0.231408 2.501239
1 0.524071 1.244578

10 0.93879 0.122188
100 0.993961 0.096521

ym(x, ci) = y◦(x)) +

m∑
i=1

yk(x, ci); i = 1, 2, 3, ..,m (8)

By putting Eq.(8) into Eq.(2), the following residual is obtained for
i = 1, 2, 3, ..,m

Res(x, ci) = LIN (ym(x, ci)) + f(x) +NON (ym(x, ci)) (9)

ym(x, ci) becomes the exact solution only if Res(x, ci) = 0 .
Mostly, these type of cases don’t show up for non-linear problems
but if such case arise, it can b minimized by least square or Galerkin
Method and find values of c1, c2, c3, ..., cm

I(ci) =

∫ a2

a1

R2
es(x, ci)dx (10)

a1 and a2 are given in the considered problem. Unknown constants
c1, c2, c3, ..., cm can be obtained from the following known con-
stants in conditions

∂I

∂c1
=

∂I

∂c2
= .... =

∂I

∂cm
= 0 (11)

therefore the approximate solution (of order m) is well determined
in Eq.(8) .

3. APPLICATION OF OPTIMAL HOMOTOPY
ASYMPTOTIC ON NONLINEAR OSCILLATOR
METHOD

Eq.(1) shows the non-dimensional differential equation of a mass
connected to a strained elastic wire having irrational elastic term.
On considering a scalar time τ = 2πt

T
= Ωt, where Ω is the un-

known parameter which represents frequency that will be calcu-
lated later in this study. Under the transformation

t = Ωt; y(t) = Au(τ) (12)
Then original Eq. (1) becomes

Ω2u
′′
(τ) + u(τ)− λu(τ)√

1−A2u2(τ)
= 0 (13)
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with initial condition u(0) = 1 and u
′
(0) = 0. Here u

′
denotes the

derivative of y with respect to τ . Therefore a family of equations
constructed by OHAM as

(1− q)LIN [φ(τ, g)] =M(τ, g)
[
Ω2φ

′′
(τ, g) + φ(τ, g)−

λφ(τ, g)√
1−A2φ2(τ, g)

]
= 0

(14)

and the linear operator given as

LIN

(
φ(τ, g)

)
=
[∂2φ(τ, g)

∂τ2
+ φ(τ, g)

]
(15)

Now φ(τ, 0) = u◦(τ); φ(τ, l) = u(τ) are the initial condi-
tions, y◦(τ) is the approximated initial value of y(τ). Therefore,
φ(τ, g) fluctuates from u◦(τ) to u(τ) as the embedding param-
eter g increase from 0 → 1 . Explicating φ(τ, g) in the form
of series with respect to the parameter g, one can easily obtain
φ(τ, g) = u◦(τ) + gu1(τ) + .... Let the auxiliary function be :

M(τ, g) = c1g cos τ (16)

The zeroth order problem with initial conditions is written as

g◦ : u
′′
◦(τ) + u◦(τ) = 0; u(0) = 1 and u

′
(0) = 0 (17)

which has a solution u◦(x) = cosx. The first order problem is

g1 : u
′′
1(τ) + u1(τ) = c1 cos τ

[
Ω2u

′′
◦(τ) + u◦(τ)−

λu◦(τ)√
1−A2u2

◦ (τ)
; u(0) = 0 and u

′
(0) = 0

(18)

solution of Eq.(18) is

u1(x; Ω, c1) =
c1

12A3

[
A
(
− 6A(Ω2 − 1) + 2A(Ω2 − 1) cos 2x−

3
√

2λ
√

2 +A2(1 + cos 2x)
)

+ cosx
(
− 4A3+

6λA
√

1 +A2 + 4A3Ω2 − λ ln 8− 6λ ln(A+√
1 +A2) + 6λ ln(

√
2A cosx+√

2 +A2(1 + cos 2x)
)
− 6λ(A2 − 1) sinx

(
tan−1

√
2A sinx√

2 +A2(1 + cos 2x)

)]
(19)

Now, using Eq. (8), the solution becomes:

u(x,Ω, c1) = u◦(x) + u1(x,Ω, c1) (20)

u(x; Ω, c1) = cosx+
c1

12A3

[
A
(
− 6A(Ω2 − 1) + 2A(Ω2 − 1) cos 2x−

3
√

2λ
√

2 +A2(1 + cos 2x)
)

+ cosx
(
− 4A3+

6λA
√

1 +A2 + 4A3Ω2 − λ ln 8− 6λ ln(A+√
1 +A2) + 6λ ln(

√
2A cosx+√

2 +A2(1 + cos 2x)
)
− 6λ(A2 − 1) sinx

(
tan−1

√
2A sinx√

2 +A2(1 + cos 2x)

)]
(21)

The values of Ω and c1 are calculated with the method of least
squares, as mentioned in Eqs.(9-11). These values are presented in
Table (1) for corresponding values of amplitude λ.

For comparison purposed, the approximate periods
(TV IM , TEBM , TOHAM ) with exact one (TEXACT ) are
tabulated in Table (2) for a large and small value of amplitude λ.

4. CONCLUDING REMARKS
In this work, the approximated solutions obtained through Opti-
mal Homotopy Asymptotic Perturbation Method are in complete
agreement with exact solution and other approximated solutions
obtained through several numerical methods. Instead of using other
techniques, this method can be a better option to solve such non-
linear oscillator problems.
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