
International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.2, June 2016

5

Presentation of a Pattern to Counteract the Attacks of

XSS Malware

Abbas Ali Najjari
 Department of Computer,

 Zanjan Branch
Islamic Azad University,

Zanjan, Iran

Nasser Modiri
 Department of Computer,

 Zanjan Branch
Islamic Azad University

,Zanjan, Iran

ABSTRACT

Cross Site programming (XSS) is the script attack in web

pages, and it is accounted as one of the most dangerous

problems of web applications. The researchers of security

have investigated on different problems and they have found

that the XSS vulnerability exists in many of known websites.

The vulnerability is applied when an attacker reaches to an

authorized user’s web explorer optionally and he/she might do

cookie theft, develop destructive software, thieve the session

and change the path of destruction. The validation of the

user’s input is the first obstacle to protect the web applications

against this vulnerability. The main aim of improving the

security of web applications is improvement in the quality of

user’s input validation. Unfortunately, the web application

developers usually forget the user’s input validation and/or

implement a weak validation. In this paper, it is attempted to

present a pattern to validate the user’s input correctly in the

web applications, and the obtained results are compared with

the tools of scanning the existing vulnerability.

Keywords

web vulnerabilities, input validation, XSS malware

1. INTRODUCTION
Using the web applications for social communications,

hygienic services and financial operations is growing.

Unfortunately, the software vulnerability has become a vital

issue for web applications. According to the latest security

report statistics of websites, 47% of the websites have XSS

security problems [15]. In year 2015, the open web

application security project (OWASP) [1] and the common

weakness enumeration (CWE) [3] reported the XSS

vulnerability as the most prevalent vulnerability of web-based

applications. Abusing this vulnerability may have severe

influence on the organizations. The main reason for XSS

vulnerability may be due to weakness in the application code

which is because of the weakness existing in the programming

language or lack of correct authorization of user’s input or

lack of observing the security standards in coding by the

software developers [14]. Each time the destructive inputs run

without required validation by the application, this

vulnerability occurs and it causes that the hackers may thieve

the user account, obtain the cookie, send arcane information

or disconnect the service and perform many other destructive

activities through entering destructive scripts into the input.

According to the variety of programming languages and lack

of problem comprehension development by the programmers

and their unfamiliarity with secure coding methods, this

vulnerability exists in most of the web-based applications.

Therefore, validating the user input is the first obstacle for

protection of web applications against the vulnerability.

Improvement in the quality of validation of user input may be

the main objective of improvement of web applications.

Unfortunately, the web application developers usually forget

the validation of user input or implement a weak

validation[6].

2. LITERATURE REVIEW
In this section, the studies, the methods and the tools

presented for counteracting these attacks are reviewed.

Only the cases of testing with sufficient vectors of attack may

force the main and mutant to do different behaviors. Hossein

Shahriari and Mohammad Zakeri created the error-based

testing tool (MUTEC) which changes the sensitive phrases in

program sentences through operator mutation and reduces the

generated error during running [5].

The static analysis method recognizes the polluted inputs from

the external data resources; tracking the polluted data flow

and investigation on this point that whether the sink data, e.g.

SQL phrases have reached to output HTML sentences or not.

Benjamin and Monica Lahm were using binary decision

making diagram for analyzing the considered points in the

scripts of the server side. Their approach is to determine the

pattern of vulnerability in inquiry programs [9].

Static method-based analysis has caused inability in

recognizing the incorrect functions in the protection. Diode et

al developed Saner tool which investigates on the accuracy of

protection functions to counteract the XSS attacks. This

method is a replacement for PIXY method which proceeds to

recognize the error methods potentially in the protection

through using static analysis like what was suggested by

Weserman and Sue, and then it proceeds to counteract this

type of attacks in a time in which the injection occurs using a

series of inputs including string attack and the method of

checking it. Static-based analysis may prevent from XSS

attacks in many cases and its defect is that it often causes

generating many incorrect positive cases [4].

Web pages which are scripted by ASP>NET might have a

series of vulnerability which is not observable by its owner.

Adneasa et al have presented an algorithm for recognizing the

security vulnerabilities in pages. This algorithm performs the

exploration operations in websites and applications. This

vulnerability scanning tool works on the applications written

based on ASP.NET and having C# and VB programming

language codes. For this purpose, the scripted program

determines a report of defects and weaknesses and

vulnerabilities in webpages based on this point that which

files and which texts have them. This algorithm may help the

organizations rectify the vulnerabilities and raise the security

of their programs [2].

The aim of security test is to recognize defects which may

cause abusing in order to perform attacks. In this paper, a

method is presented which acts in recognizing the

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.2, June 2016

6

vulnerabilities in web pages using the practical tests. In this

order, at first, it saves the HTML pages which have no

vulnerabilities, and then using valid data, it saves the pattern

of valid pages, and then the HTML output of each input

entered by the user is compared with valid patterns. If it is not

similar to the pattern, it is stated as an invalid and vulnerable

input. Among the disadvantages of this method, abundant

incorrect positive production can be mentioned [12].

Presenting an approach to recognize the vulnerabilities

created through injecting code in web pages is a method

presented in this paper through incorporating the deductive

model into evolutionary fuzzy logic. The deductive model is

used to obtain the behavior of the web-based application and

based on its findings, different inputs are produced using

genetic model. The genetic model produces the considered

inputs automatically through automatic learning to be

recognized through vulnerable input [13].

Due to lack of filtering the user input which enters the web

pages, the XSS vulnerability is generated. It is widely used by

the software developers and the inspectors. Studying in this

field is utilized as an approach to check and investigate the

program code which causes changing the incorrect code into

the coding of the secure model. Also some guides are

presented to improve the coding of the program model into

the model counteracting the XSS attacks [8].

The input validation test may detect and neutralize the XSS

vulnerability in the input programs. The IVT features-based

method, creates the test cases with the aim of applying a

combination of valid or invalid inputs in their features. In

order to prevent the unique dependencies in the

characteristics, Neoli et al attempted to be aware of valid

input conditions through analyzing the input fields and their

surrounding texts in the scripts of the receiver side. The code-

based IVT analysis method applies the static analysis of

server-side codes to extract the valid or invalid input

conditions. Generally, to a great extent, the effect of both

code-based criteria and methods relies on the evolutionary of

features or the sufficiency of the collection produced in the

test for detecting the XSS vulnerabilities in the source code.

Among the disadvantages of this method, lack of preventing

the incorrect positive valid inputs can be mentioned [10].

3. TOOLS OF SCANNING THE

VULNERABILITY OF WEB PAGES
There are different tools to detect the vulnerabilities of web

pages, but generally, the available scanning tools which

perform the validation of the user input in web pages are

divided into two classes based on crawl and proxy in the view

of their performance [1].

In tools which perform based on crawl in the web pages such

as Nikito2, Wikito, Acunetix Web Vulnerability Scanner

tools, the web pages initialize the inputs automatically based

on initial definitions and they translate their results, and no

control is carried out on the validity of the input data which

whether the input format is entered based on the definitions or

not.

In the opposite, the tools which work based on proxy, e.g.

(Fiddler, Burp Proxy, Tamperie) tools, allow the developers

edit the input in the web pages directly, but they do not give

them any help with respect to production of different input

tests. In the following table, the features of these tools are

compared with each other [10].

According to table.1, it can be concluded that crawl-based

tools are appropriate to counteract the XSS attacks. In this

project, Acunetix web vulnerability scanning tool is used in

order to compare with the suggested pattern. This tool is used

in most of the studies as a pattern for detecting the XSS

vulnerabilities [7].

Table 1. Comparison between the tools of scanning the

vulnerabilities of web-based programs

Characteristic Crawl Base Proxy

Base

Determining the type of the input

field
Yes No

Production and edition of

experimental inputs
No Yes

Counteracting SQL injection Yes No

XSS with predetermined input Yes No

Producing invalid input based on

valid input

For entering

the system
No

Predetermined test SQL,XSS No

Content test No No

4. PROPOSED MODEL
In this model, an approach is presented through benefitting

from the advantages of the current method which prevents

from occurrence and creation of this type of attacks through

accurate validation of inputs and creation of black and white

list. The steps of the suggested model is as below:

Fig 1: Overall procedure of suggested model

Analysis of application and recognizing the type of

input fields

Producing regular phrases related to input fields

Assessment of structural similarity between HTML

pages and counteracting these attacks

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.2, June 2016

7

Fig 2: Steps of NUIVT algorithm

5. SUGGESTED METHOD
In this section, the suggested algorithm is presented. Figure 1

represents the general procedure of the suggested pattern. For

easiness, the suggested algorithm is named NUIVT (Novel

User Input Validation Test). The steps of function of the

algorithm is described in the next section.

5.1 NUIVT algorithm
The NUIVT algorithm includes three distinct steps:

The first step includes analyzing the user input fields and

detection of the filed types in the input forms.

The second step includes types of input based on regular

phrases and based on the filed type defined by the user.

The third step is testing types of invalid inputs in order to

detect the vulnerability and counteracting it based on

comparison between the structure of the pages translated from

valid and invalid inputs.

5.2 Steps of algorithm
The main objective of the NUIVT algorithm is to produce

invalid inputs in order to assess the results obtained from the

validation test of user input for web pages in the side of the

service-recipient. The NUIVT input is a HTML page and the

NUIVT output includes invalid inputs and validation test of

user input.

Figure 2 represents three main elements of NUIVT with

relative details. In the first step, the input fields searcher,

detects them and analyzes the texts surrounding the input

fields in the web pages, then determines the type of input field

based on analyzing the keywords in the description

surrounding it through detecting the input points. In the

second step, in order to define valid inputs for types of input

field based on user’s definition, the type of input field is

corresponded to a regular phrase. Then, the test inputs

producer causes producing invalid inputs through disordering

the regular phrase. Also, the test inputs producer produces

valid inputs according to regular phrases.

In the third step, the test results evaluator compares the

structural similarities between the page obtained from the

results with invalid inputs and the page obtained from valid

inputs and also the main HTML page, and it specifies the test

results to see if there is any vulnerability.

5.3 Input tests producer
After detecting the input fields and describing them, in this

section, the method of producing the test inputs is carried out

for the input fields based on their description. Based on

description of the input fields, the type of input field may be

detected. The postal code and the email address are examples

of these fields.

Based on the input field type, the input test producer,

correlates each input field with a corresponding regular phrase

which defines the valid inputs for each input field based on it

Input tests producer

Invalid inputs

Test result

(Admission/

rejection)

Input fields detecter

It detects the input fields

based on describing its

surrounding

It determines the type

of input fields

It produces

ordered regular

phrases

Test result evaluator

NUIVT output

MIUIVT

HTML Page

Valid inputs

Pages obtained

from invited

inputs

Pages obtained

from valid inputs

Main pages

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.2, June 2016

8

in interaction with the user. For facilitating the work, at first a

regular default phrase is considered for each field, then the

input tests producer obtains the invalid inputs through

disassembling the regular phrase in valid inputs. Using invalid

inputs test, the vulnerability of lack of correct validation of

user input may be detected for web application at the test

time. If the vulnerability of user input validation exists in

under-test web-based applications, the invalid inputs cause

producing unconventional behavior of web-based

applications.

It is why in order to produce the invalid inputs, after

corresponding an input field with a regular phrase which

defines valid inputs for the input field, the input tests are

produced through disassembling the regular phrases using the

below laws:

The definitions of operation laws RU1 to RU6 are:

RU1: removes the compulsory and obligatory phrases from

regular phrases.

RU2: the order of rowing of the phrases is disassembled.

RU3: the number of iteration of the elements in the selected

collections is changed.

RU4: selects elements from the complementary collections in

the collection of regular phrases, particularly, it adds the

characters to it in the input field domain after the boundary

values.

RU5: invalid and dangerous characters such as empty string,

strings started with greater period, and very long strings are

added to the regular phrases.

RU6: adds the particular pattern of XSS to the regular

phrases.

If our input field is our email address, then based on the

library of regular phrases, the corresponding regular phrase

would be:

[\w-\.]+@([\w-]+\.)+[\w-]{2,4}

If any of the disorder laws from RU1 to RU6 runs once in the

corresponding regular phrase, six disordered phrases are

obtained as follows:

RU1: [\w-\.]+ ([\w-])+[\w-]{2,4}

RU2: @[\w-\.]+([\w-]+\.)+[\w-]{2,4}

RU3: [\w-\.]+@([\w-]+\.)*+[\w-]{5,}

RU4: \d+@([\w-]+\.)+[\w-]{2,4}

RU5: [\w-\.]*@([\w-]+\.)*[\w-]{2,4}

RU6:[\w-\.]+@([\w-]+\.)+[\w-]{2,4}+{XSSExpression}

In order to obtain that which one of the vulnerabilities of user

input validation exists in web-based applications, the

disordered phrase is applied separately, and it is recorded in

each step of the obtained results.

5.4 Results evaluator
In general, the behavior of web-based applications against

different inputs can be divided into three types of processes in

the below:

Defensive: if the web application detects and rejects the

invalid input, the web application is introduced as defensive,

and the test result is acceptable.

Non-sensitive: if the web application accepts invalid input,

the web application is introduced as non-sensitive or failed,

and the test result is unacceptable.

Defenseless or falling: if the web application represents

obvious error against the invalid input, such as The Page Not

found, it is falling or defenseless.

In practice, the web applications are defensive. If the

application can detect the invalid input, three types of pages

are translated by defensive web applications.

Its type-1 page is similar to the main page along with a series

of guidance, e.g. enter the email address correctly.

The page type-II does not translate any forms and it only

contains a series of guidance.

Its type-3 page conducts the user to another page.

In the second state, the translated page is very different with

the main page and even the page translated from valid results.

In the third state, it cannot be detected accurately and

automatically, because the web application may refer to each

one of the pages on the server. The web application is non-

sensitive when the page translated from invalid input is

similar to the page translated with valid input. Two HTML

pages are similar if in terms of structure, when they are

opened on the explorers, they are similar. The application

under web has fallen when the translated page has a series of

error with codes such as The page not found 404. In such

cases, the web application accepts the invalid input and it

opens a page representing leakage of information from the

configuration or the internal function of the program which

opens a text error. This information may be a leverage to

perform dangerous attacks even automatically which all of it

is given in OWASP.

Detection of the similarity of two webpages on the explorer

through observing them is not easy. For this purpose, in order

to detect the similarity between the web pages, they are

opened based on the order of the tags, and their similarity is

detected based on the arrangement of the tags, because the

similarity of two webpages depends on their placement style

and the order of their tags. For this purpose, a mechanism

incorporating XSLT language and LCTS (Long Common Tag

Sequence) LCTS algorithm is used. Before assessing the

invalid inputs, based on the regular phrase related to the valid

inputs, the structure of the pages translated from these inputs

and the structure of the main pages are saved in the related

data platform. After this step, the invalid inputs test begins.

The pattern which is used for testing these inputs is given in

figure. 3.

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.2, June 2016

9

Pages

produced with

invalid inputs

Does it have the

significant HTML

error?

Comparison

ComparisonSimilar No

 No

Similar

The website is

not vulnerable

and it is

The end

No

Start

Yes

The page has

vulnerability

Yes

The web site is

not defensive

and it is

vulnerable

The web site is

vulnerable against

the input

Yes

Saved

main page

Saved results

obtained from

valid input

Figure.3. Evaluator of similarity between HTML pages

At first, it is controlled whether the HTML page translated

from invalid inputs has predetermined errors of HTTP or not,

such as “The Page not found”. If the answer is yes, the

application falls and it is vulnerable. If the answer is no, the

page translated from invalid input (black list) is compared

with the main page and the valid inputs (white list). If the

page translated from invalid inputs is similar to the main page

structurally, the invalid input is prevented and the application

is defensive. If the page translated from the invalid input is

similar to the page translated with the valid input, there are

two possibilities:

1) The application is not sensitive, because it has accepted

an invalid input.

2) The application is defensive and it is sufficiently strong

and it has switched to a page having a valid input. In

these conditions, if the page translated from the invalid

input is different with the page translated from valid

input and the main page, the web application is known as

defensive. In each step, after completing the related

process, the inputs which are obtained based on the

results are saved in order to raise the intelligence of the

system in white and black lists in order to prevent from

repetition of the comparisons.

6. EVALUATION OF THE TEST

RESULTS
In order to illustrate the influence of the input test based on

NUIVT, in order to recognize the vulnerabilities of the test

website for detecting the vulnerabilities of the test website, 22

vulnerabilities of user input were designed according to table

no.2 and the tests required in the test website were carried out

through applying the laws RU1-RU6, and the scanning tools

of vulnerability of web pages, e.g. Acunetix Web

Vulnerability Scanner 10, and the obtained results were

compared. The obtained results represented that the presented

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.2, June 2016

10

approach has completed the Acunetix vulnerability scanning

tool through testing the greater range of inputs and correct

validation of user input.

Table 2. Results of the obtained test in comparison to the Acuntix scanner

Type of input

submission

Type of generated error Detection with RUs Percentage of error

detection

NUIVT Acuntix

Length of invalid

input

Invalid sub-field RU1,RU5

2/2 0/2
Pointing to empty value RU1

Overflowing of buffer RU1

Out of the range RU1

Invalid type
Submission of invalid and out-of-range

numbers and strings and
RU1-RU5 4/4 0/4

Invalid value

Overflowing of memory or buffer RU5

7/9 0/9

Error of lack of file RU1-RU5

Submission of false output key RU5

network disconnection error (false port or

submission of false name of server)
RU5

XSS injection Running un-expectable scripts RU6 7/7 7/7

Invalid inputs which are produced based on RU1-RU6 laws,

are divided into four classes of invalid input length, invalid

type, invalid value and injection of particular code of XSS

which are placed in column 1 of table 2. The second column

of table 2 represents the type of the generated error. The third

column represents the law used to produce the applied input

tests and which has caused error. The two last columns

represent the number of vulnerabilities which are recognized

in both approaches. This number includes number of

vulnerabilities in type out of the detected vulnerabilities.

Finally, the total number of vulnerable are counted manually

and the results are controlled.

7. CONCLUSION
As it was stated, XSS is one of the ten main vulnerabilities of

web applications according to OWASP report. With the

growing trend of using the web applications which are mainly

developed from web programming languages in HTML pages,

not only the vulnerability is not annihilated, but the hackers

could plan dangerous attacks by this malware and influence

on many websites through new swindles and exploiting from

the defects or programmers’ mistakes in coding. In this

research, a particular look is taken to the validation of the user

input. This approach produces a wide range of inputs in web-

based applications. In most of the tests carried out, usually the

comparison with the white list or the same valid inputs is

considered, and the main factor which is not considered is that

an invalid input might exist having the same valid input

reaction due to weakness in the security, hence, in these

conditions, comparison with the white list has no validity and

it causes incorrect positive production. In this research, the

range of input tests is developed through considering the type

of input fields by defining the regular phrases corresponding

to these fields, and all valid inputs are produced and then

based on them, invalid inputs are produced and comparison

with black and white list has become possible. The tag-based

presented approach analyzes the HTML pages produced from

different inputs which this trend causes accurate distinction

between valid and invalid inputs.

8. REFERENCES
[1] Andrews, A., Offutt, J., Alexander, R. “Testing web

applications by modeling with fsms”. Software Syst.

Model. 4 (3), 326–345, 2005.

[2] Avancini, M. Ceccato, F.B. Kessler, “Grammar Based

Oracle for SecurityTesting of Web Applications”, in: 7th

International Workshop on Automation of Software Test

(AST), no. line 13, pp. 15–21, 2012.

[3] Common Vulnerabilities and Exposures (The Standard

for Information Security Vulnerability Names)

http://cwe.mitre.org/

[4] D. Balzarotti et al., “Saner: Composing Static and

Dynamic Analysis to Validate Sanitization in Web

Applications,” Proc. 29th IEEE Symp. Security and

Privacy, IEEE CS, pp. 387-401, 2008.

[5] H. Shahriar and M. Zulkernine, “MUTEC: Mutation-

Based Testing of Cross Site Scripting,” Proc. 5th Int’l

Workshop Software Eng. for Secure Systems (SESS 09),

IEEE, pp. 47-53, 2009.

[6] Isatou Hydara, Abu Bakar Md. Sultan, Current state of

research on cross-site scripting (XSS) – A systematic

literature review, Elsevier, Volume 58, February, Pages

170–186, 2015.

[7] José Fonseca, Marco Vieira, Henrique Madeira, “Testing

and comparing web vulnerability scanning tools for SQL

injection and XSS attacks”, in: 13th IEEE International

Symposium on Pacific Rim Dependable

Computing.p.365,372,2007.

[8] L.K. Shar, H.B.K. Tan, “Predicting common web

application vulnerabilities from input validation and

http://cwe.mitre.org/

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.2, June 2016

11

sanitization code patterns”, in: Proc. 27th IEEE/ACM

Int. Conf. Autom. Softw. Eng. – ASE, p. 310, 2012

[9] M.S. Lam et al., “Securing Web Applications with Static

and Dynamic Information Flow Tracking,” Proc. 2008

ACM SIGPLAN Symp. Partial Evaluation and

Semantics-Based Program Manipulation (PEPM 08),

ACM, pp. 3-12, 2008

[10] N. Li et al., “Perturbation-Based User-Input-Validation

Testing of Web Applications,” J. Systems and Software,

Nov. 2010, pp. 2263-2274

[11] Open Web Application Security Project, XSS (Cross-Site

Scripting), Prevention Cheat Sheet, 2015;

https://www.owasp.org/index.php/XSS_(Cross_Site_Scri

pting)_ Prevention_Cheat_Sheet.

[12] R.B. Brinhosa, C.M. Westphall, C.B. Westphall,

“Proposal and Development of the Web Services Input

Validation Model”, in: IEEE Network Operations and

Management Symposium (NOMS), pp. 643–646, 2012.

[13] R. Komiya, I. Paik, M. Hisada, “Classification of

malicious web code by machine learning”, in: 3rd

International Conference on Awareness Science and

Technology iCAST, pp. 406–411, 2011.

[14] S. Fogie et al., XSS Attacks: Cross Site Scripting

Exploits and Defense, Syngress, 2007.

[15] White Hat Security Website Stats Report 2015,

https://info.whitehatsec.com/Website-Stats-Report-

2015.html

IJCATM : www.ijcaonline.org

