
International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.5, June 2016

Software Safety Analysis of Ball Position Control
System using SFMEA

Kadupukotla Satish Kumar
Dept of Computer Science and Engineering

JNTU Kakinada

Panchumarthy Seetha Ramaiah
Dept of Computer Science and Systems Engineering

Andhra University, Visakhapatnam

ABSTRACT
Software Failure Modes and Effects Analysis (SFMEA) is a tra-
ditional system safety analysis technique which is widely used in
the aerospace, automotive and other safety-critical intensive sys-
tems. However, traditional FMEA methods are difficult to identify
and analyzing the failure modes which caused by the dynamic log-
ical information between interfaces or functions, such as software-
hardware interaction. To intuitively assume the effects of module
failures in a system, numerous approaches have been proposed.
This work addresses the use of SFMEA by using an experiment for
safety-critical embedded control systems. The work presented here
provides a general example illustrating how SFMEA can be effec-
tively applied to an 8-bit micro-controller (Chip 89S52) based com-
puter control system having little or no hardware protection. This
paper also describes Functional FMEA, interface FMEA, and de-
tailed software FMEAs. The experimental results of SFMEA also
found the hardware failures and memory faults. The safety analy-
sis reveals several design deficiencies and physical faults for which
modifications are needed. This paper also found that, when prop-
erly implemented SFMEA at the right point in the Software Devel-
opment Life cycle, it makes requirements, design and code reviews
more effective. It also identifies single point failures due to soft-
ware.

Keywords
BPCS, Software Safety,SFMEA

1. INTRODUCTION
Software plays the primary and central role in the functioning of
various kinds of systems like real-time computer control systems,
embedded computer systems, etc. In fact, software is increasingly
being used to handle safety-critical computer systems which were
formerly controlled by humans or hardware. With the increased de-
pendency of systems on software and with its evolving size and
complexity, it has now become the major contributor to system fail-
ures and a primary threat to system safety and reliability.
The FMEA methodology is one of the risk analysis techniques rec-
ommended by international standards. It is a systematic process to
identify possible failures existed in an embedded computer system.
FMEA is mostly adapted for equipment and material failures, but
in a broad sense, human error, performance and software errors can
also be included. By applying the SFMEA methodology during the

various phases of a product’s lifecycle, the methodology provides a
systematic strategy for examining all the ways in which a product
can fail. The results of SFMEA in turn affect the product design,
process development.
Nathaniel Ozarin (2004) [3], FMEA method first distinguishes the
failure modes and then analyses the cause and effect of these fail-
ure modes. K. Jenab and J. Pineau (2015) [19], In the practice of a
SFMEA, analysts collect lists of module failure modes and try to
deduce the effects of those failure modes on the system. Although
there is software available that assists engineers in performing cler-
ical tasks, such as forming tables and filling data. The intelligent
part of an FMEA process remains a manual and difficult process.
Thus, one of the main criticisms of SFMEA is that the time taken
to perform the analysis can often exceed the period of the design
and development phases and therefore the analysis defect becomes
a mere deliverable to the customer and not a useful tool capable
of improving the design. SFMEA is an import and commonly used
method to improve the safety and reliability of the safety-critical
software. Experimental platforms are key elements for the practi-
cal approach of hypothesis and theories in control systems. One of
the main contributions of this experiment is the fact that they are a
main tool for the technological transfer and the innovation process.
The process of SFMEA has three main focuses:

—The acknowledgment and evaluation of potential failures and
their effects.

—The identification and prioritization of actions that could elim-
inate the potential failures reduce their chances of occurring or
reduce their risks.

—The documentation of these identification, evaluation and cor-
rective activities so that product quality improves over time.

Isaksen (1997) described in a technical report as, SFMEA is a
bottom-up safety analysis of potential failure modes within a com-
puter system and assessment of the associated effects on system
functionality [1]. It is used to identify potential design weaknesses
such that they can be mitigated in the early stages of a design pro-
gram. Weaknesses within the software portion of systems are of
particular concern. However as software increases in size and com-
plexity it cannot typically be exhaustively verified as a result, latent
software faults have become a leading source of safety and quality
issues for medical devices. Coming to medical devices, which are
using software, according to the Office of Science and Engineering
Laboratories (OSEL), USA’s annual report 2011, over 20% of all
medical device recalls in the United States were due to software
failures [2]. R.T. Anderson,(1976) [6], MIL-STD-1543 (1974) [4]

1

International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.5, June 2016

and SAMSO-STD 77-2 [5], (1977) Standards and a handbook have
been published to direct its orderly application on military projects.
The standards give useful insight into why FMEA is employed.
As per Goble.W (2012), FMEA was created in the 1960s as part
of the U.S. Minuteman rocket program in order to find and miti-
gate unanticipated design problems [9]. McKinney postulated that
in order for FMEA to be effective, it must be implemented early
in development so that design may be altered to mitigate or elimi-
nate the catastrophic, critical, and safety related failure possibilities
[10]. Jenab, K., (2005) developed a group based FMEA which tried
to resolve conflict among experts [13][19]. Chao and Ishii (2007)
presented an example and case study using a modified FMEA de-
sign process [17]. It decomposed the design process into six po-
tential problem areas and used a question-based FMEA approach.
Dale (2009) [18] wrote a book which defines safety-critical sys-
tems and the processes which can be used to solve issues related
to safety. Bozzano (2010) [15] contributed to the safety assessment
of critical systems with a book focused on techniques and meth-
ods for dependability, reliability, and safety assessment [15]. Il-
liashenko (2012) [14] declared that there is no universally valid ap-
proach for determining which technique to use for reliability anal-
ysis. Their study had two main goals; reduce the risk of incorrect
safety assessment, and examine FMEA-based techniques to deter-
mine how and when to use them for particular tasks. De Miguel
(2005) and Franceschini.F (2001) and Haider, A. (2013) stated that
use of only one analysis technique is insufficient, and suggest com-
bined usage of methods is important for safety analysis of critical
systems [11] [16]. Early researches described limited experimen-
tal concepts. They described more theoretical concepts. This paper
describes an experimental safety analysis using SFMEA for Safety-
Critical Computer Systems. When properly implemented SFMEA
at the right point in the Software Development Life cycle, it makes
requirements, design and code reviews more effective. It also iden-
tifies single point failures due to software.
The rest of the paper is organized as follows. The experimental
setup and implementation is described in section 2. SFMEA with
results described in Section 3 and section 4 gives conclusion.

2. EMBEDDED COMPUTER BASED BALL
POSITION CONTROL SYSTEM (BPCS)

The objective of this research work is to enlighten the use of
SFMEA for an embedded control system through the development
of an experiment. P. L. Goddard (1993), (2000) discussed the ap-
proach for SFMEA together with recognizing the types of variables
and their failure modes [7] [8]. Experimentation of the proposed
methodology is based on the ball position controller system, which
is shown in figure 1. The control objective of this work is to regulate
the flow of air into a plastic tube so as to keep a small light weight
ball suspended at a predetermined height called the set-point. In-
creasing the flow raises the ball and decreasing the flow lowers it.
The BPCS experiment consists of: 3-feet long white plastic tube,
light weight ball, DC motor fan, and ultrasonic sensor circuit and
89S52 micro controller.
The vertical 3-feet long clear plastic tube attached to a stand, which
contains a light weight ball inside, a DC motor fan at the bottom to
lift the ball, and an ultrasonic sensor at the top to sense the balls
height. The tube is connected to the DC motor fan inlets via an in-
put manifold which has an inlet at the bottom as indicated. There
is an output manifold at the top of the plastic tube with an outlet
as shown. The presence of the manifolds is a key part of the ex-
periment. The ultrasonic sensor circuitry detects the position of the
light weight ball and the micro-controller regulates the power sup-

ply applied to the DC motor fan so as to control the air flow into the
white plastic tube, keeping the light weight ball at a predetermined
height.

Fig. 1. Ball Position Control System (BPCS)

BPCS Explanation
The light weight ball position control system experiment is a sys-
tem composed of five modules, where one of them has a DC mo-
tor fan to blow air into the white plastic tube moving a Styrofoam
light weight ball inside it as shown in figure 1.The modules are in-
strumented with an ultrasonic sensor to sense the light weight ball
height. The air flux coming from the DC motor fan is transferred
to the white plastic tube using a pressurization cylinder whose ob-
jective is to reduce the turbulence produced by the DC motor fan,
which delivers an almost laminar flux. Each module is coupled with
the others by the operational objective of the system is to maintain
the light weight ball at a predefined height in the plastic tube. The
software in the micro-controller provides the control mechanism; it
implements a proportional controller that is, the output signal data
is proportional to the amount of error in the balls position relative to
the set-point. The software is implemented in assembly language,
which is assembled and downloaded into the system internal ram of
micro-controller. This ensures that the program stays in the micro-
controller when the system power is out.
A Block diagram of the BPCS system is shown in figure 2. Each
module is coupled with the others by a common manifold. The base
box corresponds to the input manifold. The airflows into the mani-
fold by the unique input located at the left side of the box. The air
in the input manifold is distributed over each module in a parallel
way. Depending on the power applied by the DC motor fan and
the input size of the manifold, the air flux continues its trajectory
moving the ball inside it. The air from the plastic tube is combined
again in the output manifold and ejected through the output, in the
right side of the box. This reconfigurable structure possesses input
and output manifolds in individual boxes that can be connected be-
tween them by their design as a Lego piece. The BPCS dynamical
model comprises an energy transfer by airflow from the DC motor
fan to the light weight ball. This transfer is typically nonlinear.
The micro-controller generates a Pulse Width Modulation (PWM),
it is a modulation technique used to encode a message into a pulsing
signal. Although this modulation technique can be used to encode
information for transmission, its main use is to allow the control of
the power supplied to electrical devices, especially to inertial loads
such as motors. PWM generates a control signal to regulate the

2

International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.5, June 2016

speed of the DC motor fan. The higher the duty cycle of the PWM
signal, the faster the fan runs. An output control circuit between the
micro-controller and the DC motor fan provides hardware “stops
that ensures that the PWM signal is within the specified “safe op-
erating range.

Fig. 2. Block Diagram of Ball Position Control System (BPCS)

If the Pulse Width Modulated cycle is out of the meticulous range,
the fault pointer light is switched-on and the system is closed. This
fault verification function ensures a safe functional range for the
DC-motor even in the occurrence of a software malfunction. The
altitude of the ball is determined by the sensor. The ultrasonic sen-
sor generates high-frequency sound waves and evaluates the echo
which is received back by the sensor, measuring the time interval
between sending the signal and receiving the echo to determine the
distance the ball is from the sensor. If the ball is nearer to the sensor,
the time interval between the transmission of sound wave and re-
ception of echo will be very small. The output power of the sensor
is sample by the converter Analog to Digital, which is embedded in
the micro-controller. The inward power is transformed into a one-
byte value in an ADC register, which demonstrates elevation of the
ball. The ADC is standardized so that a 016 corresponds to the ball
being at the base of the tube, and FF16 corresponds to the ball at
apex.
The error of the ball point is calculated by deducting the deliberated
ADC value from the set-point value. The variation is multiplied by
a constant to determine the rectification to the PWM signal. If the
intensity of the error is high, then more correction is required.
If the calculated ADC value is below the set-point variable, the ball
is above the set-point and the micro-controller enhances the duty
cycle to increase the speed of the fan and raise the ball. On the other
hand, if it is below the set-point, the duty cycle is reduced to lower
the ball. The input control circuit sandwiched between the ultra-
sonic sensor and the micro-controller make sure that the voltage at
the input port is not larger than 5 volts. The I/O control circuits de-
crease the risk of damage to the system from unforeseen ultrasonic

sensor failures. For example, if the sensor shorts out and outputs an
enormously high power (e.g. 10 V) to the micro-controller without
a safety control circuit, then the micro-controller would be harshly
smashed and have to be changed.
Figure 3 shows the program flow chart for the ball position con-
trol system. In the flow chart, first initialization of serial port and
THEN initialization of PWM variable are done. Then the software
enters an infinite loop in which the analogy voltage from the sensor
is read, converted to a number, and stored in an ADC register. The
duty cycle is then calculated and the output pin set, high or low,
to achieve this cycle. The timer interrupt in the micro-controller
triggers an Interrupt Service Routine (ISR) every 5 microseconds:
a counter, which is initially set to 100, is decremented by 1 on
each interrupt. To achieve a given duty cycle (say 50%) for the
PWM signal, the output pin is set low for each interrupt until the
counter reaches the given value(i.e., 50) then it is set to high until
the counter is decremented to 0. At 0 the counter is reset to 100 and
the output pin to low and the cycle is repeated, thus producing a 0.5
ms (milliseconds) period with a 50% duty cycle.

3. SFMEA FOR BPCS
In the process of a SFMEA, analysts compile lists of modules fail-
ure modes and try to infer the effects of those failure modes on the
system. System models, typically simple engineering diagrams, as-
sist analysts in understanding how the local effects of modules fail-
ures propagate through complex architectures and ultimately cause
hazardous effects at system level. The system has five main func-
tional modules:

(1) Ball-position-controller

(2) DC motor fan and drive circuit

(3) Ultrasonic sensor

(4) Display module

(5) USB-Interface.

In table 1, if the output signal pin stays high, the duty cycle goes to
100% and the fan blows at the full speed. This results in ball shoot-
ing to the top of the plastic tube, possibly damaging the sensor. If
the output pin stays low, the duty cycle goes to 0, and the DC motor
fan speed decreases and stops.
This results in ball falling to the bottom of the plastic tube. If there
is no output signal, the effect is the same as if the signal is low and
the system loses response, stops, and the ball falls to the bottom
of the plastic tube. Observe that the last two failure modes in ta-
ble 1 have the same level and system effects and thus are put into
the same fault category class. The first failure mode is different and
hence goes into a different fault category class.
Functional FMEA for BPCS: A functional FMEA analyses the
overall system failures. Figure 3 shows the flow chart for the main
program of the Ball Position Control System (BPCS).
Functional SFMEA for BPCS: The functional SFMEA shows
significant software faults as failures of the functions executed by
the software. From the functional point of view the program is spit-
ted into three software tasks, which are consider independently.
These are:

(1) A/D conversion.

(2) Output response computation.

(3) Interrupt service routine. The Interrupt Service routine flow
chart is shown in figure 4.

3

International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.5, June 2016

Table 1. Functional SFMEA for Ball position controller module

Module
Failure
mode

Component
Effect

Failure
impact

Fault Category

B
al

lP
os

iti
on

C
on

tr
ol

le
r

Output
signal
too high

DC motor
fan runs too
fast

Light
weight
ball is
shot to
the top
of the
plastic
tube and
possibly
damages
sensor

A

Output
signal
too low

DC motor
fan runs too
slow

Light
weight
ball falls
to the
bottom
of the
plastic
tube

B

Loss of
output
signal
to drive
circuit

DC motor
fan does
not run or
system does
not respond

Light
weight
ball falls
to the
bottom
of the
plastic
tube

B

Table 2. Functional SFMEA for Ball position controller module

Module
Failure
mode

Component
Effect

Failure
impact

Fault
Cate-
gory

Observation

A
na

lo
g

to
D

ig
ita

lc
on

ve
rt

er

Failure
to get or
convert
position
(in hard-
ware)

Incorrect
output
data

DC
motor
fan
speed
does
not
change

D

Setup hard-
ware or
software
checking to
ensure the
input data
is updated
periodi-
cally

Too
much
delay in
getting
value

Response
data too
slow

DC
motor
fan
speed is
incor-
rect

D

Set up
software
checking
to measure
the pin
transition
time.

Incorrect
value in
interrupt
register

Incorrect
output
data

DC
motor
fan
speed is
incor-
rect

C

Set up
software
checking
to ensure
the value
within the
tolerance

Table 3. Interface FMEA for the interfaces between Interrupt Service
subroutine and PWM Generation

Interface
Failure
mode

Component
Effect

Failure
impact

Fault
Cate-
gory

Explanation

In
te

rr
up

ts
er

vi
ce

su
br

ou
tin

e/
PW

M
G

en
er

at
io

n
(D

ig
iti

ze
ou

tp
ut

)

Input
duty
Cycle
to ISR
stuck
high

DC motor
fan runs
too fast

Light
weight
ball is
shot to
the top
of the
plastic
tube
and
pos-
sibly
damage
sensor

A

Set up
hardware
or software
check to
ensure
the light
weight
ball does
not rise
more than
some toler-
ance value
above the
set-point

Input
duty
Cycle
to ISR
stuck
low

DC motor
fan does
not run or
runs too
slow

Light
weight
ball
falls
to bot-
tom of
plastic
tube

B

Set up
hardware
or software
checking
to ensure
the input
voltage
within the
tolerance

P in P
0.1 stuck
high

DC motor
fan runs
too fast

Light
weight
ball is
shot to
the top
of the
plastic
tube
and
pos-
sibly
dam-
ages
sensor

A

Setup hard-
ware or
software
check to
ensure the
ball does
not rise
more than
some toler-
ance value
above the
set-point

P in P
0.1 stuck
low

DC motor
fan does
not run or
run too
slow

Light
weight
ball
falls
to bot-
tom of
plastic
tube

B

Set up
hardware
or software
checking
to ensure
the output
voltage
within the
tolerance

The functional SFMEA views failure modes, component effect, re-
lated failure impact and fault category formed by the software. Ta-
ble 1 shows the functional SFMEA for BPCS.
The safety analysis of the code shows in table 2. For example, in
the first row of table 2, when the input pin is not initialized the
effect is that the pin cannot be read. The scribbled pin results in no
output data to the DC motor fan, so the fan does not run, which
leads to the consequence that the ball stays or falls to the bottom of
the plastic tube. Observe that all three functional failures in Table
2 have the same level system effects and thus belong to the same

4

International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.5, June 2016

Table 4. Detailed SFMEA for output Response Computation

Variables Failure Modes
Critical Software Variables

Set
Height(30%
duty cycle)

Error
(Frequently
within 45)

Constant for
p-controller

(Constant=1/3)

Previous duty
cycle (Around

40)

Present duty
cycle after
updating

(Around 50)

Constant for
converting the

scale from
0-100 to

00−FF (Con-
stant=100/256)

Set-Point

Value exceeds
allowed

tolerance high
≥ 70 45 low 1

3 40 50 100
256

Value exceeds
allowed

tolerance low
≤ 20 50 high 1

3 40 50 100
256

Error

Value exceeds
allowed

tolerance high
30

$FF (8 bits) or
a big positive

number

1
3 40 50 100

256

Value exceeds
allowed

tolerance low
30

$80 (8 bits) or
a big negative

number

1
3 40 50 100

256

Constant for
p-Controller

Value exceeds
allowed

tolerance high
30 50

$FF (8 bits) or
a big positive

number
40 50 100

256

Value exceeds
allowed

tolerance low
30 50 high

$80 (8 bits) or
a big negative

number
40 50 100

256

Previous
duty cycle

Value exceeds
allowed

tolerance high
30 50 1

3 ≥ 70 50 100
256

Value exceeds
allowed

tolerance low
30 50 1

3 ≤ 20 50 100
256

Present duty
cycle after
updating

Value exceeds
allowed

tolerance high
30 50 1

3 40 50
$FF (8 bits) or
a big positive

number
Value exceeds

allowed
tolerance low

30 50 high 1
3 40 50

$80 (8 bits) or
a big negative

number

Constant for
converting
the scale

Value exceeds
allowed

tolerance high
30 50 1

3 40 50 100
256

Value exceeds
allowed

tolerance low
30 50 1

3 40 ≤ 20 100
256

fault category. The observation section recommends installing is
redundant sensor to detect the balls location and restart the system.

3.1 Analog to Digital Conversion Functional FMEA
Another functional failure is the conversion of the analog input to
digital equivalent (A/D). This has three possible failure modes as
shown in Table 2. These are Failure to get or convert position (in
hardware), too much delay in getting value and incorrect value in
interrupt register.
For the first failure mode, it is found that, the ADC fails to con-
vert the ball position, the result is an erroneous micro-controller
output to the DC motor fan, which itself, leads to an uncontrolled
fan, which leads to an out of control system and failure. SFMEA
may include some hardware failures as part of the analysis. It is

also observed that the last two failure modes have the similar ef-
fects the first is different and these effects also differ from those
in previous table. Therefore these faults are put into different fault
category classes (i.e., A, B, C and D). The second module of the
BPCS is analog to digital converter. Table 2 display failure modes,
component effect, failure impact on the system and fault category.

3.2 Interface Software FMEA
An Interface SFMEA analyses failures affecting the interfaces be-
tween software modules. For the ball-position-controller the anal-
ysis concentrates on failures of the interfaces between A/D conver-
sion and the error detection module, Interrupt Service Routine and
the generation of the pulse width modulation signal, with Program
and OS.

5

International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.5, June 2016

Fig. 3. Flow chart for the main program of the BPCS

Fig. 4. Flow chart for the ISR of the BPCS

An experiment was carried out of the BPCS. It was assumed that
the hardware of the BPCS is fault free. An experiment comprising
of 100 trial runs of the system where every trial run comprised of 30
minutes. The possible failures of the interface between the ISR and
the generation of the PWM signal were observed as shown in Table
3. Consider the first failure mode Data register holds the intended
duty cycle for the PWM signal; if its value is erroneously high, the

DC motor fan blows at too high a speed. This results in the light
weight ball shooting to the top of the plastic tube. One corrective
action to take in response to this failure is to set up a hardware or
software check to ensure that the balls rise is within a certain height
tolerance of the set-point. If it rises more than the tolerance value
above the set-point, an error should be signaled to the operator.
Observe that this failure mode has the same effects as failure mode
in Table 1; thus it is assigned to the same fault category.

3.3 Detailed Software FMEA
Detailed SFMEA examines the consequence of individual software
variable failures on the system output. The SFMEA shows the ef-
fects of different variable errors. This work concentrates only the
extreme case (high or low) for each variable. The ball position con-
troller program contains the following software components. These
are Interrupt Service Routine Initialization, Analog to Digital con-
version subroutine and output response computation.
The experiment founds the various remarks relate to the safety anal-
ysis, which shows the effects of the variable failures on the critical
software variables in the program If assuming a value of 30 in the
set-point variable generates a 30% duty cycle, if the set-point value
exceeds the allowed tolerance high (¿ 70% duty cycle), the ball will
stabilize at some point above the set-point. If the set-point value
exceeds the allowed tolerance low (¡20 % duty cycle), the ball will
stabilize at some point below the set-point. The error of the ball
point is calculated by deducting the deliberated ADC value from
the set-point value. If the set-point is high the value of the error
will always be low. The other critical software variables will not
be affected by the set-point variable being erroneously high caus-
ing the fan speed to be increased. Similarly, if the set-point is low
the value of the error will always be high causing the fan speed
to be decreased. The other software variables not affected by the
set-point variable being erroneously high.

4. CONCLUSION
SFMEA is an inductive, bottom-up analysis of potential failure
modes within a system and assessment of the associated effects on
system functionality. It is used to identify potential design weak-
nesses such that they can be mitigated in the early stages of a design
program. This paper describes the importance of SFMEA by con-
ducting an experiment on a micro-controller based control system
having tiny or no hardware safeguard. The objective of this work
is to regulate the flow of air into a plastic tube so as to keep a tiny
less weight ball suspended at a predetermined height called the set-
point. This paper also demonstrates the functional, interface, and
detailed software FMEAs. In SFMEA the software is split into var-
ious functional blocks and their failure modes are presumed and the
consequences of these failures on the system are determined. The
interface SFMEA illustrates faults affecting the interfaces.
The detailed SFMEA examines software faults associated to the
key software variables in the program. The experiment finds the
various remarks relate to the safety analysis, which shows the ef-
fects of the variable failures on the critical software variables in the
program. If assuming a value of 30 in the set-point variable gen-
erates a 30% duty cycle, if the set-point value exceeds the allowed
tolerance high (¿ 70% duty cycle), the ball will stabilize at some
point above the set-point. The error is calculated by subtracting the
balls position from the set-point. If the set-point is high the value
of the error will always be low. SFMEA Identified potential failure
modes in BPCS, and also assess the risk associated with those fail-
ure modes and prioritize issues for corrective action and carry out

6

International Journal of Computer Applications (0975 - 8887)
Volume 143 - No.5, June 2016

corrective actions to address the most serious concerns. It is also
found that many of the errors found in the software failure modes
analysis are likely hardware errors and those may not be detected
in the normal operation of the system unless extra monitoring. This
work can be extended by reinventing the experiment so that new
physical characteristics are included. In this way, SFMEA can be
applicable to real time embedded computer control systems.

5. REFERENCES
[1] Isaksen, U., Bowen, J.P. and Nissanke, N. (1997) System

and Software Safety in Critical Systems, Technical Report
RUCS/97/TR/062/A, University of Reading, UK.

[2] Office of Science and Engineering Laboratories (OSEL) 2011
Annual Report.

[3] Nathaniel Ozarin (2004) Failure Modes and Effects Analy-
sis During Design of Computer Software. Proceedings of The
Annual Reliability and maintainability Symposium.

[4] MIL-STD-1543 (1974), Reliability Program Requirements
for Space and Missile Systems.

[5] SAMSO-STD 77-2, (1977) Failure Modes and Effects Anal-
ysis For Satellite, Launch Vehicle and Re-entry Systems.

[6] R.T. Anderson,(1976) Reliability Design Handbook, IIT Re-
search Institute, Catalog No. RDH-376.

[7] P. L. Goddard (1993)Validating the safety of real time control
systems using FMEA, Proc. Ann. Reliability and Maintain-
ability Symp. pp. 227-230.

[8] P.L. Goddard,(2000) Software FMEA Techniques, Proc. Ann.
Reliability and Maintainability Symp, pp. 118-123.

[9] Goble, W. (2012). The FMEA method .INTECH, 59(2),
14-16,18,20. Retrieved from http://search.proquest.
com.ezproxy.libproxy.db.erau.edu/docview/
1008351257?accountid=27203

[10] McKinney, B. T. (1991). FMECA, the right way. InReliability
and Maintainability Symposium, 1991.Proceedings., Annual
(pp. 253-259) IEEE.

[11] De Miguel, M. A., Fernandez, J., Pauly, B., & Person, T.
(2005). Model-Based integration of safety analysis and re-
liable software development. In Object-Oriented Real-Time
Dependable Systems, 10th IEEE International Workshop on
(pp. 312-319) IEEE.

[12] Franceschini, F., & Galetto, M. (2001). A new approach
for evaluation of risk priorities of failure modes in
FMEA.International Journal of Production Research, 39(13),
2991-3002.

[13] Jenab, K., & Dhillon, B.S. (2005). Group-based failure effects
analysis (GFEA). International Journal of Reliability, Quality
and Safety Engineering, 12(4), 291-307.

[14] Illiashenko, O., & Babeshko, E. (2012). Choosing FMECA-
based techniques and tools for safety analysis of critical sys-
tems. Information & Security, 28(2), 275-285.

[15] Bozzano, M., & Villafiorita, A. (2010). Design and safety as-
sessment of critical systems.CRC Press.

[16] Haider, A. A., & Nadeem, A. (2013). A survey of safety anal-
ysis techniques for safety critical systems.International Jour-
nal of Future Computer and Communication, 2(2), 134-137.
doi:10.7763/IJFCC.2013.V2.137

[17] Chao, L. P., & Ishii, K. (2007). Design process error proof-
ing: failure modes and effects analysis of the design process.
Journal of Mechanical Design, 129(5), 491-501.

[18] Dale, C., & Anderson, T. (2009). Safety-Critical Systems:
Problems, Process and Practice: Proceedings of the Seven-
teenth Safety-Critical Systems Symposium Brighton, UK,
Springer Science & Business Media.

[19] K. Jenab and J. Pineau / Management Science Letters 5
(2015), Failure mode and effect analysis on safety critical
components of space travel.pp. 669678.

7

http://search.proquest.com.ezproxy.libproxy.db.erau.edu/docview/1008351257?accountid=27203
http://search.proquest.com.ezproxy.libproxy.db.erau.edu/docview/1008351257?accountid=27203
http://search.proquest.com.ezproxy.libproxy.db.erau.edu/docview/1008351257?accountid=27203

	INTRODUCTION
	Embedded Computer based Ball Position Control System (BPCS)
	SFMEA for BPCS
	Analog to Digital Conversion Functional FMEA
	Interface Software FMEA
	Detailed Software FMEA

	Conclusion
	References

