
International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.6, June 2016

46

SQLI-Dagger, a Multilevel Template based Algorithm to

Detect and Prevent SQL Injection

 Teresa K. George
Research Scholar

Cochin University of Science and Technology

Rekha James,PhD
Associate Professor

Cochin University of Science and Technology

ABSTRACT

SQL injection attacks are often found within the dynamic

pages of a web application that exploit the security

vulnerability of the database layers of an application. In this

attack category a specifically crafted SQL command is

entered in the form field of a web application instead of the

expected information. SQL injection takes advantages of the

design flaws in poorly designed web applications to poison

SQL statements and bypass the normal methods of accessing

the database content .In these types of Injection attempt the

database server execute undesirable SQL Code to steal,

manipulate or delete the content of a database. The proposed

algorithm is implemented on an application which is placed

on a proxy server kept between the Database server and a web

server. It is working on multi-level template based approach,

which is a model based approach to detect the illegal queries

before they are executed on the database server. With the

support of the query evaluation engine it can detect and block

the injected query. Only the benign query is allowed to get the

access to the back end database server. An alert message is

generated if there is an Injection.

Keywords

Vulnerability, Exploit, injection, Benign Query, Detection,

Prevention

1. INTRODUCTION
SQL injection attack compromises back end database servers

of an online application and perform the critical information

disclosure or even manipulate the databases. Privilege

escalation and unauthorized access to the database are most

common outcome of this attack. SQL Injection Attack can be

easily carried out by a malicious user if the user inputs within

the applications are not validated properly or the available

vulnerability scanners are not effective to validate the

interactive queries send to the database servers through the

web server [1].

SQL Injection makes use of the publically available fields to

gain entry to the database. As the threat of SQL injection

become more advanced, the need for developing a defense

against SQL injection is greater than ever. In the hands of a

very skilled hacker, a web application code weakness can

reveal a root level access of application servers by bypassing

firewalls and endpoint defense [2]. Databases that use SQL

include MS SQL server, Oracle, MySQL and Access are

equally subjected to Injection attack if coded incorrectly.

The proposed algorithm is a model based approach, working

on two different levels of code injection as per the specified

template to detect the illegal queries before they are executed

on the database server [3]. In this approach a specific identity

for each legal query is created by the developer, using the

predefined template and considering all possible types of

standard query format. This unique identity for each Intended

query is placed in a template repository with the support of an

evaluation engine; it can effectively detect and alert the

presence of an Injection attack [4].

2. MOTIVATION
Most of the clients at the online application are accessing the

backend database server by means of web forms, logon

screens. These user inputs are directed to the database servers

and are executed in the form of a Structured Query Language

statement. If those applications are having in appropriate input

validations, then the hackers will get unauthorized access to

the critical servers such as database server and the entire

application which requires a high degree of confidentiality can

be compromised [5]. As the user interactions are growing

higher and better, the automated techniques of attacks are also

easily available. Hence, the attack spectrum is growing

exponentially.

3. WEB APPLICATION AND SQL

INJECTION ATTACK
SQL injection vulnerabilities put a severe threat on the online

application, because it serves as an open door to the hacker to

explore and compromise backend Database. SQL injection

appear in a small percentage of applications, yet are making

huge impact on the business organization in terms of data

theft or compromising the most important database Server [6].

Figure 1: SQL Injection Attacks

SELECT * FROM administrators
WHERE username = Arun'' OR 1=1 OR '1'='1'

AND password = '';

User name: Arun '' OR 1=1 OR '1'='1'
Password : “

Web Server DB Server Client

HTTP

Request SQL

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.6, June 2016

47

4. SQLI-DAGGER ALGORITHM
Web application usually consists of more than one

static/dynamic pages; each page consists of one or more

database request code. It is now obvious that each page can

generate multiple database requests and so there will more

than one legitimate query pattern. In our template based

architecture, there is a template repository stores legal query

with a unique identity [7]. The Query evaluation engine which

is one of the core components in this template based

architecture uses a SQLI-Dagger algorithm to parse the query

to verify the presence of any type of injection attack. The

query evaluation engine compares level by level and field by

field between the standard query template JSON file and the

input query template[8]. In any level if a contrast is found,

then an error is reported. An alert message is send to the

administrator, if the injection is detected and the injected

query is blocked from further processing. Otherwise the query

is considered as the benign query and forwarded to the

backend database server for information access.

4.1.SQLI - Dagger Design specification for

Detection

SQL query written by a user is considered as in the form of

forest. Here, forest is a collection of independent queries

written by user. A forest is an undirected tree which is

composed of connected components in which each and every

component can be represented as a tree. Each independent

query is in tree like structure[9]. Each node in the tree

contains sub-queries. Forest of independent query is

represented as, F = [I1,I2,……,Ik] where I1,I2,……,Ik are

independent queries.

Dagger Detection Algorithm for SQLI

Dagger Detection Algorithm (Forest F)

For each Tree I in F

For each Vertex V in I

Visited (V) = False;

Next

Traverse(Tree I)

Next

Traverse(Tree Node I)

For each Vertex V in I

If (!Visited (V)) Then

Visited (V) = True;

Boolean match =

templateMatch (TreeNode.Value);

If (match==true) Then

Break;

 ElseIf(!IsNull(TreeNode.Child))

Return

queryText +=

TreeNode.Value;

 Traverse(TreeNode.child);

 Else

 Return queryText +=

TreeNode.Value;

 End If

 End If

 Next

End

Figure 2: SQLI_Dagger _the proposed algorithm

4.2.The template match procedure
The template match procedure is done as per the following

template specification identified and after analyzing the

different categories of probable legal queries which can be

tested as per the below given template specification [10].

TemplateMatch(InputQuery)

1. String ValidQuery = getStandardQuery(InputQuery)

//Return the standard query of the current node

2. Input_QuerytypeList[] = getQueryType(InputQuery)

3. Input_TableList[] = getTables(InputQuery)

4. Input_FunctionList[] = getFunctions(InputQuery)

5. Input_SplsymbolList[] = getSplsymbols(InputQuery)

6. Input_CommentList[] = getComment(InputQuery)

7. Input_OperatorList[] = getOperator(InputQuery)

8. Input_ColumnsList[] = getColumns(InputQuery)

9. Input_JoinsList[] = getJoins(InputQuery)

10. Input_S/mVariablesList[] =

getS/mVariablesList(InputQuery)

11. Input_GlobalVariableList[] =

getGlobalVariableList(InputQuery)

12. Input_KeywordList[] = getKeywordList(InputQuery)

13. Input_SubqueryNum=getNoOfChild(InputQuery); //

Return the no childs of the current node from the tree

14. Intended_QuerytypeList = getQueryType(ValidQuery);

15. Intended_TableList[] = getTables(ValidQuery);

16. Intended_FunctionList[] = getFunctions(ValidQuery);

17. Intended_SplsymbolList[] =

getSplsymbols(ValidQuery);

18. Intended_CommentList[] = getComment(ValidQuery);

19. Intended_OperatorList[] = getOperator(ValidQuery);

20. Intended_ColumnsList[] = getColumns(ValidQuery);

21. Intended_JoinsList[] = getJoins(ValidQuery);

22. Intended_S/mVariablesList[] =

getS/mVariablesList(ValidQuery);

23. Intended_GlobalVariableList[] =

getGlobalVariableList(ValidQuery);

24. Intended_KeywordList[] =

getKeywordList(ValidQuery);

25. Intended_SubqueryNum = getNoOfChild(ValidQuery);

// Return the no of childs of standard query of the current

node

26. Boolean QuerytypeValid = Match(Input_QuerytypeList,

Intended_QuerytypeList);

27. Boolean TablesValid = getMatch(Input_TableList,

Intended_TableList);

28. Boolean FunctionValid = getMatch(Input_FunctionList,

Intended_FunctionList);

29. Boolean SplsymbolValid =

getMatch(Input_SplsymbolList,

Intended_SplsymbolList);

30. Boolean CommentValid =

getMatch(Input_CommentList, Intended_CommentList);

31. Boolean OperatorValid = getMatch(Input_OperatorList,

Intended_OperatorList);

32. Boolean ColumnsValid = getMatch(Input_ColumnsList,

Intended_ColumnsList);

33. Boolean JoinsValid = getMatch(Input_JoinsList,

Intended_JoinsList);

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.6, June 2016

48

34. Boolean S/mvariableValid =

getMatch(Input_S/mVariablesList,

Intended_S/mVariablesList);

35. Boolean GlobalvariableValid =

getMatch(Input_GlobalVariableList,

Intended_GlobalVariableList);

36. Boolean KeywordValid = getMatch(Input_KeywordList,

Intended_KeywordList);

37. Boolean SubqueryValid = getMatch(Input_

SubqueryNum, Intended_SubqueryNum);

38. If(QuerytypeValid&&TablesValid&&FunctionValid&&

SplsymbolValid&&CommentValid&&OperatorValid&

&ColumnsValid&&JoinsValid&&

S/mvariableValid&&GlobalvariableValid&&KeywordV

alid&&SubqueryValid) Then

 Return True;

End If

39. Boolean getMatch(List1,List2)

SizeOfList1 = size(List1);

 SizeOfList2 = size(List2);

 Count = 0;

 If(SizeOfList1== SizeOfList2) Then

 For i=1 to SizeOfList1

 If(List1[i]!=List[i])

 Return False;

Else

 Count++

 End If

 Next

Else

 Return False;

End If

If(Count==SizeOfList1)

 Return True;

End If

A sample screen shot of template format is given in Figure 3.

5. DISCUSSION AND RESULT
In Dagger detection algorithm each tree (independent query)

in the forest is processed independently. For each tree first

invoke the root node of the tree and check for injection. If any

injection is detected, then the process is stopped. If that query

is a valid query it returns the „true‟ value. Next, if there is a

child node for the current node, the child is checked and the

process is repeated until a node is found with no child nodes.

When we get a node with no children processed it. It is

explained by using the example given in Figure 4. This query

contains two independent queries, and each independent query

contains sub-queries. Figure 5 shows the forest representation

of above mentioned query. If we remove the root node we get

the forest of two trees, these trees are the independent queries

in the user query. Each red colour node represents the root of

the tree, which means independent query. Each green and blue

colored node are the sub-queries (child) in the independent

query.

Figure 3: Sample Template format

SELECT CustomerID, CustomerName, City, Street,

housenum

FROM Customers

WHERE CustomerID IN

(SELECT a.CustomerID

FROM Customers AS a INNER JOIN

(SELECT Country, City, Street, houseno,

count (*) AS cn

 FROM Customers

 GROUP BY Country, City, Street, housenum

 HAVING count (*) >1) AS b

 ON (a.Country = b.Country) AND

(a.City = b.City) AND (a.Street = b.Street) AND

(a.housenum = b.housenum))

ORDER BY City, Street, housenum;

SELECT * FROM department WHERE deptno NOT IN(

SELECT deptno FROM emp);

Figure 4. Sample query format for evaluation.

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.6, June 2016

49

As shown in Figure. 5, first the red node is invoked.

Consider the following query:-

“SELECT CustomerID, CustomerName, City, Street,

housenum

FROM Customers

WHERE CustomerID IN” ----------------------------(1)

Query (1) is checked for any injection. If it is a valid query ,

then child nodes are checked. In this case, there are two child

nodes. The first child node [Query (2)] is considered next.

“SELECT a.CustomerID

 FROM Customers AS a INNER JOIN” ----------(2)

This is a recursive process and it will be continued until the

node has no children. So the presence ofa subquery is checked

in Query(2).

“SELECT Country, City, Street, housenum, count(*) AS

cn FROM Customers

GROUP BY Country, City, Street, housenum

HAVING count(*) > 1” --------------------------------(3)

Query (3) is a simple query, and has no children. Similarly all

the nodes in the tree are processed. This Dagger detection

process is repeated for all the trees in the forest.

Figure 5. Tree structure of the evaluation procedure

6. CONCLUSION
There are many prevention and protection techniques

available against SQL Injection vulnerabilities but still there

are flaws and Injection attacks. Handling of SQL injection

vulnerabilities effectively by a single tool is near to

impossible due to the sophistication in the existing automated

tools to penetrate in to the web application system for

exploitation. The SQLI-Dagger algorithm, implemented using

Java based application program is embedded on a proxy

server. It detects the SQL injection vulnerabilities without any

false positives. With the support of the template matching

algorithm, the standard query identity for each legal query

stored in the template repository of the application will be

compared with the dynamic user queries entered through the

web pages. As the Query templates placed in the template

repository is in JSON format, accessing and parsing the query

will be faster compared to the other available techniques and

have lighter storage specification.

7. REFERENCES
[1] Su, Zhendong, and Gary Wassermann. "The essence of

command injection attacks in web applications." ACM

SIGPLAN Notices. Vol. 41. No. 1. ACM, 2006.

[2] Junjin, Mei. "An approach for SQL injection

vulnerability detection."Information Technology: New

Root F

SELECT
CustomerID, CustomerName, City, Str

eet, housenum
FROM Customers

WHERE CustomerID IN Subquery
AND (a.Street = b.Street) AND
(a.housenum = b.housenum))

ORDER BY City, Street, housenum;

SELECT a.CustomerID
FROM Customers AS a INNER

JOIN Subquery AS b
ON (a.Country = b.Country) AND

(a.City = b.City)

SELECT
Country, City, Street, housenum, cou

nt(*) AS cn
FROM Customers

GROUP BY
Country, City, Street, housenum

HAVING count(*) > 1

SELECT * FROM department

WHERE deptno NOT IN

SELECT deptno FROM emp

Independent query1 Independent query2

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.6, June 2016

50

Generations,2009. ITNG'09. Sixth International

Conference on. IEEE, 2009.

[3] Dharam, Ramya, and Sajjan G. Shiva. "Runtime

monitoring technique to handle tautology based SQL

injection attacks." International Journal of Cyber-

Security and Digital Forensics (IJCSDF) 1.3 (2012):

189-203.

[4] Ruse, Michelle, Tanmoy Sarkar, and Samik

Basu."Analysis & detection of SQL injection

Vulnerabilities via automatic test case generation of

programs." Applications and the Internet

[5] Kindy, Diallo Abdoulaye, and Al-Sakib Khan Pathan. "A

detailed survey on various aspects of sql injection in web

applications: Vulnerabilities, innovative attacks, and

remedies." arXiv preprint arXiv:1203.3324 (2012).

[6] Chapela, Victor. "Advanced SQL njection." OWASP

Foundation, Apr (2005).

[7] Kemalis, Konstantinos, and Theodores Tzouramanis.

"SQL-IDS: a specification-based approach for SQL-

injection detection." Proceedings of the 2008 ACM

symposium on Applied computing. ACM, 2008.

[8] Kosuga, Yuji, et al. "Sania: Syntactic and semantic

analysis for automated testing against sql

injection." Computer Security Applications

Conference, 2007. ACSAC 2007. Twenty-Third Annual.

IEEE, 2007.

[9] Buehrer, Gregory, Bruce W. Weide, and Paolo AG

Sivilotti. "Using parse tree validation to prevent SQL

injection attacks." Proceedings of the 5thinternational

workshop on Software engineering and middleware.

ACM, 2005.

[10] Valeur, Fredrik, Darren Mutz, and Giovanni Vigna. "A

learning-based approach to the detection of SQL

attacks." Detection of Intrusions and Malware, and

Vulnerability Assessment. Springer Berlin Heidelberg,

2005.123-140.

IJCATM : www.ijcaonline.org

