
International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.6, June 2016

15

Formal Verification of Distributed Transaction Execution

in Replicated Database System using Event - B

Pooja Sharma
Pranveer Singh Institute of

 Technology, Kanpur, U.P. (208020)
U.P.T.U., Lucknow

Raghuraj Singh Suryavanshi
Pranveer Singh Institute of

Technology, Kanpur, U.P. (208020)
U.P.T.U., Lucknow

ABSTRACT

Distributed database is a technique in which copy of a

database is replicated over the network. A distributed database

appears to a client as a single database however in all actuality

it is an arrangement of databases distributed on numerous

computers or servers. Replication of data in a distributed

database system is for enhancing data availability and making

data more fault tolerant. Formal methods are used for insight

knowledge and refinement of technique to be used and formal

methods also helps in understanding how to accomplish those

objectives. In our model a coordinator site finds a site with a

largest replica number and then broadcast its updated replica

to all other sites in a distributed environment.

Keywords

Keywords: Formal Methods, Formal Specification, Event-B,

Coordinate site, Participant site, Replication.

1. INTRODUCTION
Distributed database is a kind of virtual database whose

portions are physically stored in different places. The clients

at any zone can get information at wherever in the system just

as the information were all secured at the client's own

particular zone. A distributed database management system is

the item that arrangements with the distributed databases, and

gives a passageway segment that makes this course clear to

the client. The objective of a distributed database management

system is to control the management of a distributed database

in a way that it appears to the client as a centralized database.

Distributed transactions are executed in a distributed database

environment, where a course of action of related information

servers host related information. A distributed transaction

contains a course of action of sub transactions, each of which

is executed by one information server.

 Replication is the process of copying and maintaining

database objects in multiple databases that make up a

distributed database system. Replication can improve the

performance and protect the availability of applications

because alternate data access options exist. For example, an

application might normally access a local database rather than

a remote server to minimize network traffic and achieve

maximum performance. Furthermore, the application can

continue to function if the local server experiences a failure,

but other servers with replicated data remain accessible [1].

According to the model requirement it consists of various

events and one of the event is Conflict check in which a site

checks that resources needed by requesting site is free or not

if it is free then it performs its operation. Another event is

Broadcast event in this event coordinator site broadcast a

message to every site. All the participant sites receives a

message is shown by the participant deliver event and in

participant reply event all participant site reply to coordinator

with their respective replica numbers. In remote replica

update event it updates a site having a maximum value

because site with a maximum replica number shows the

current value of replica.

The remaining of this paper is summarized as: Section 2

explains about the specification language Event-B and Rodin

tool. Section 3 explains about events used in model. Section 4

describes about the model. Section 5 finally concludes the

paper.

2. EVENT-B AND RODIN TOOL
The original B method is also known as classic B [2] and its

event-based evolution is known as event B or event B method.

The event B method [3, 5] reuses the sets and logical

notations of the classic B method [4] and creates new

notations for providing models based on events. In addition,

the refinement of models is a key feature for incrementally

developing models from a textually-defined system, while

preserving correctness; it implements the proof-based

development paradigm. Development of each model requires

proofs for invariance and refinement. Operations used in

classic B method do not exist in the event B method and these

operations in B method are substituted by events in event B.

Events modify the system’s state (or state variables), by

executing an action, only if a guard holds true. During the

refinement of classic B method maintenance of operations is

compulsory whereas in event-B new events can be introduced

for the model refinement. Modification of new variables

introduces new proof obligations for ensuring the correctness

of refinement. At last we can say that an event B model is a

system with a finite number of state variables and a finite

number of events. If the system reacts to its environment, the

event B model should integrate events of the environment.

Event-B is a method for the stepwise development of

programs. The development is mostly top-down and gradually

introduces details, rather than starting at the concrete level of

writing code. In our model Event-B method is implemented in

the Rodin tool. Some other B tools are B tool kit, Atlier B,

click n Prove and etc. these tools provide a virtual

environment for the generation and discharging the proof

obligations.

3. INFORMAL DESCRIPTION OF

EVENTS USED IN MODEL
The informal descriptions of events are as follows:

3.1 Start Transaction
Start transaction event keep record of all the transaction that

is submitted at any site. The site where transaction is

submitted is known as coordinator site for that transaction and

it creates an entry of submitted transaction and the objects

need by this transaction.

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.6, June 2016

16

3.2 Conflict Check
It is compulsory to watch that the object required by the

submitted transaction is possessed by other dynamic

transaction or not. On the off chance that the object is

obtained by some other transaction then asking for site needs

to hold up until that site (site at present acquiring the object)

finishes its execution and discharge that object. Transaction

manager is in charge of checking such clashes at the asking

for site.

3.3 Commit of Transaction
The transaction can be of two sorts either read only

transaction or write or update transaction. On the off chance

that if the transaction is read only transaction then it reads the

estimation of information object from the coordinator site

(where the site is submitted) and if the transaction is update or

write transaction then it updates information object and then

commits the transaction.

3.4 Broadcast
In distributed environment, the sites in a network

communicate with another site by exchanging the messages.

Here we are considering full replication in which when a

transaction is submitted to a site (coordinator site) then

coordinator site broadcast the request message to other sites

(Participant sites) in a network. When a participant sites reply

to coordinator site with their respective replica numbers.

3.5 Participant_Deliver
In this model of full replication, Event Participant_Deliver

guarantees that all the request messages from the coordinator

site got by participant site. In our model we are not

considering time delays between messages send and got and

we additionally expect that there is no message

disappointment happens.

3.6 Participant_Reply
After all participant sites gets a request message from the

coordinator site. Participant sites send an answer message to

coordinator site with their particular replica number.

3.7 Coordinator_Delivery
All participant sites send their replica number to the

coordinator site and afterward in the wake of getting the

replica number coordinator site counts the number of sites

from which reply message with a replica number is received.

3.8 Add_Site
The event Add_Site adds those new sites in the network that

are activated sites or a working sites.

3.9 Remove_Site
The event Remove_Site simply removes those sites from the

network that are down sites or not working sites.

3.10 IdentifyRecentReplica
This event ensures that atleast “card(SITE)-1”(suppose if

there are n sites then atleast from n-1 sites reply message

should receive) reply messages should be obtain from the

participant sites and then it find out the site with a maximum

replica number and then update that site(site with a maximum

replica number). Aim behind obtaining the maximum replica

number is to ensure the current updated replica.

3.11 Remote_Tran_Submit
After identifying the maximum replica number the transaction

is submitted at remote site for performing action requested by

the submitted site. This event ensures that the submitted

transaction is a subset of siteactivetransa and no other

transaction is holding the same data object which is required

by the submitted transaction. If these constraints are fulfilled

then it includes the transaction into the set of siteactivetransa

and set status of transaction to pending.

3.12 Remote_Replica_update
After the commitment of transaction at local site the update

messages are sent to remote sites so that they can also change

their replicas.

3.13 CommitWriteTran
The event commitWriteTran commits the updated transaction.

Updation takes place at the site which has the maximum

replica number. After updation it set the status of transaction

as commit and removes that transaction from the set of active

sites and increment the replica number by one.

3.14 ReadTran
The Event ReadTran commits the transaction. Read

transaction takes place at the site which has the maximum

replica number. After reading of transaction it removes that

transaction from the set of active sites.

3.15 AbortWriteTran
Write transaction and read transaction occurs only when the

coordinator site receives maximum reply from the participant

site and site having maximum replica number and if it does

not able to fulfill this criteria then abort transaction event

occurs in which it aborts the transaction and removes the site

from the set of active site set.

4. FORMAL DESCRIPTION OF

EVENTS USED IN MODEL
In a distributed transaction model we assumed that every site

is in a distributed environment having the same replicated

copy, reliable and provides availability of data. Every site has

a replica number associated with it and whenever a site wants

to perform read and write operation it submit a transaction to

a targeting site. Site where a transaction is submitted is known

as a coordinator and other remaining sites in distributed

environment are known as participant sites. A site submit a

request to the coordinator site and then a coordinator site

broadcast a message to all the participant sites with a request

message to obtain a replica number from them. All participant

sites receive a request message from coordinator site and then

they reply with their respective replica number. Coordinator

site receives a reply messages associated with a replica

number and also counts the number of a sites reply to it.

Coordinator site set a criterion for replying sites which

ensures that if this much of a participant sites reply to it then it

will perform a read or write request and if it not fulfill the

criteria then it will abort the transaction. Coordinator site

identifies replica number with a maximum value which shows

that site have a current replica number and then it sends a

message to remote site to perform read or write operation on

that site and update a replica number by one if performed

action was write otherwise there is no change in replica

number.

According to the model requirement it consists of various

events. One of the event is Conflict check in which a site

checks that resources needed by requesting site is free or not

if it is free then it performs its operation. Another event is

Broadcast event in this event coordinator site broadcast a

message to every site. All the participant sites receives a

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.6, June 2016

17

message is shown by the participant deliver event and in

participant reply event all participant site reply to coordinator

with their respective replica numbers. In remote replica

update event it updates a site having a maximum value

because site with a maximum replica number shows the

current value of replica. According to this model the

description of variables are given below [6]:

4.1 Trans
Trans variable represents the set of started transactions .

4.2 Sitetransstatus
This variable maps each started transaction at a specific site to

TRANSATATUS.

4.3 Transeffect
The variable transeffect is defined as a total function from

trans to update function.

4.4 Transobject
The variable transobject is a total function which maps an

transaction to a set of items. The set transobject(t) represents

the set of data objects read by a transaction t. The set of

objects written to by t will be a subset of transobject(t).

4.5 Replica
Variable replica is modeled as replica ∈ REPLICA and in the

context REPLICA is declared as:

REPLICA = SITE → (OBJECT → V ALUE)

It maps a total function from SITE to value function. The

value function maps a total function from objects to value

which means there are no such objects which are undefined in

replica located at any site thus all the objects should be

defined.

4.6 Siteactivetransa
The variable siteactivetransa represents set of activated

transaction at a specific site.

4.7 Siteconflictcheckstatus
The variable siteconflictcheckstatus maps each started

transaction at any site to CONFLICTCHECKSTATUS.

4.8 Coordinator
The variable coordinator represents site where the transaction

is submitted.

4.9 Sender
The sender is characterized as partial function from

MESSAGE to SITE. The mapping (m m s) ∈ sender

demonstrates that message has sent from the site s.

4.10 Deliver
The variable deliver demonstrates that the message is

delivered to a dedicated site successfully. A mapping (s m m)

∈ deliver represents that site s has delivered message m.

4.11 Messagetype
The variable messagetype is a total function which assigns

type of message to message. MESSAGETYPE is an

enumerated set which defines type of message, a message can

be either reply type or request type.

4.12 Replicano
The variable replicano is a total function which maps site to

any natural number which is a replica number of that site.

4.13 Messagerepno
The variable messagerepno is a partial function from

MESSAGE to natural number. Variable messagerepno returns

replica number associated to the site.

4.14 Totalrepsite
The variable totalrepsite is a natural number which returns the

total number of sites replied to coordinator with their

respective replica number.

4.15 Corepinfo
The variable corepinfo gives information about the site with

their respective replica number.

4.16 Maxrepno
The variable maxrepno returns maximum value of replica

number.

4.17 Updatedsite
The variable updatedsite gives information about the site

which is needed to update.

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.6, June 2016

18

Fig 1: Variables, Invariants and Initialization of Machine

4.18 Start Transaction Event
Event of a start transaction is given in fig2. Transaction tt, site

ss, updates, objects are the parameters (parameters are the

local variables used in event) of event StartTran and these

parameters are then considered by the guards. Guards state the

necessary conditions for an event to occur, all the guards are

given in the WHERE statement which ensures that all the

given statements are true because then only actions are

triggered.

New transaction tt belongs to set TRANSACTION is ensured

by guard grd1 and that transaction tt should not belong to

started transaction trans is ensured by guard grd2. Site ss

belong to set SITE is ensured by guard grd5. Site ss at which

transaction is submitted becomes coordinator site which is

shown by act6 in fig2.

VARIABLES

trans,sitetransstatus,transeffect,transobject,replica,siteactivetransa,siteconflictcheckstatus,

coordinator,sender,deliver,messagetype,replicano,msgrepno,totalrepsite,corepinfo,maxrepno,updatedsite

INVARIANTS

inv1: trans ∈ ℙ(TRANSACTION) inv2: sitetransstatus ∈ (SITE↔trans)⇸TRANSSTATUS

 inv3: transeffect ∈ trans→((OBJECT⇸VALUE)⇸(OBJECT⇸VALUE))

 inv4: transobject ∈ trans→ℙ1(OBJECT) inv5: replica∈ REPLICA inv6: siteactivetransa ∈ SITE↔trans

inv7: siteconflictcheckstatus ∈ (SITE↔trans)⇸CONFLICTCHECKSTATUS

inv8: coordinator ∈ trans→SITE inv9: sender ∈ MESSAGE⇸SITE

 inv10: deliver ∈ SITE↔MESSAGE inv11: messagetype ∈ dom(sender)→MESSAGETYPE

inv12: replicano ∈ SITE→ℕ inv13: msgrepno ∈ MESSAGE⇸ℕ

inv14: totalrepsite ∈ ℕ inv15: corepinfo ∈ SITE↔ℕ inv16: maxrepno⊂ℕ

inv17: updatedsite⊆SITE

EVENTS

INITIALISATION ≙

BEGIN

act1: trans ≔ ∅ act2: sitetransstatus ≔{ } act3: transeffect ≔ { }

act4: transobject ≔ { } act5: replica ≔rep0 act6: siteactivetransa ≔ ∅

act7: siteconflictcheckstatus ≔ ∅ act8: coordinator ≔∅ act9: sender ≔ ∅

act10: deliver ≔∅ act11: messagetype ≔ ∅ act12: replicano≔SITE×{0}

 act13: msgrepno ≔ ∅ act14: totalrepsite ≔ 0 act15: corepinfo ≔ ∅

act16: maxrepno ≔ ∅ act17: updatedsite ≔ ∅

END

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.6, June 2016

19

Fig2: Start Transactiont of Machine.

Action act1 shows that transaction tt is included into set of

started transaction and then we set status of that transaction to

PENDING as shown in act2. We also assign the status of

siteconflictcheckstatus to pending as shown by act5. We

assign data object to transaction tt and update transaction tt is

shown by act3 and act4 respectively.

4.19 Conflict Check Event
The event checkconflict checks the conflicts between

transactions as shown in fig3. This event ensures that data

object required by the requesting transaction tt at the

coordinator site ss is available at that time or not because

there can be a possibility that an object required by a

transaction tt is acquired by some other active transaction at

that time. If the data objects are not used by other transaction

then conflict check is completed and we add the transaction of

that site to the set of siteactivetransa. Guard grd5

∀tz· (tz∈trans ∧ (coordinator(tt)↦tz) ∈ siteactivetransa ⇒

transobject(tt) ∩ transobject(tz) = ∅)

depicts that any transaction tz and transaction tt belongs to the

set siteactivetransa and the data object required by tt is not

acquired by the transaction tt then check conflict is completed

and assign its status complete as shown in act1 and include

transaction to siteactivetransa set as done in act2.

Fig3: Check Conflict Event of Machine.

4.20 Broadcast Event

The Broadcast Event broadcast the message to all sites

(participating site) other than the coordinator site as given in

fig4. Transaction tt, site ss, message mm are the parameters of

the event. The grd3 ensures that the site ss is coordinator site (

i.e is the sending site) .

StartTran ≙

ANY tt, ss, updates, objects

WHERE

grd1: tt ∈ TRANSACTION

grd2: updates ∈ ((OBJECT⇸VALUE)⇸

(OBJECT⇸VALUE))

grd3: objects ∈ ℙ1 (OBJECT) grd4: tt ∉ trans

grd5: ss∈SITE

THEN

act1: trans≔ trans ∪ {tt}

 act2: sitetransstatus({ss↦tt})≔PENDING

act3: transobject(tt)≔objects act4: transeffect(tt)≔updates

act5: siteconflictcheckstatus({ss↦tt})≔pending act6:

coordinator(tt)≔ss

END

checkconflict ≙

ANY tt

WHERE

grd1: tt ∈ trans

grd2: (coordinator(tt)↦tt)∉siteactivetransa

grd3: sitetransstatus({coordinator(tt)↦tt})=PENDING

grd4: siteconflictcheckstatus({coordinator(tt)↦tt})=pending

grd5: ∀tz·(tz∈trans∧ (coordinator(tt)↦tz)∈siteactivetransa⇒

transobject(tt)∩transobject(tz)=∅)

grd6: {coordinator(tt)↦tt}∈ dom(sitetransstatus)

grd7: {coordinator(tt)↦tt}∈ dom(siteconflictcheckstatus)

THEN

act1: siteconflictcheckstatus({coordinator(tt)↦tt})≔complete

act2: siteactivetransa ≔ siteactivetransa ∪

 {coordinator(tt)↦tt}

END

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.6, June 2016

20

Fig4: Broadcast Event of Machine.

Guards grd5 and grd6 ensures that message mm should not be

already send by the sender and transaction tt at site ss is

belongs to set of activated transaction then it performs the

action act1 in which message mm is send by site ss and assign

type of a message to request as done in act2.

4.21 Participant Delivery Event
A message broadcast from the coordinator site is received by

all participant sites is ensured by

the Participant_Deliver Event as shown in fig5. Parameters tt,

ss, mm of event

Participant_Deliver are then considered by the guards. Guard

grd5 ensures that message mm should be send by sender and

guard grd7 ensures that the message mm should not yet

delivered and guard grd6 checks if type of a message mm is

request then action act1 is performed in which it delivers the

message to site ss.

Fig5: Participant Deliver Event of Machine.

4.22 Participant Reply Event
After receiving a message mm from site ss participant site has

to reply with a replica number of a site. In event

Participant_Reply grd3 checks that if a type of a message is

request and grd1 checks message mm from site ss is delivered.

If all constraints are true then participant site sends a message

with a replica number of a site as shown in act3 and assign a

type of a message to reply as shown in act2.

Fig6: Participant Reply Event of Machine.

4.23 Coordinator Delivery Event
Event coordinator delivery is shown in fig7.

Coordinator_Delivery event models reception of reply

messages from participant sites. If a type of a message is reply

(as shown in grd2) then it receives a message as shown in

act1. In act2 it gives total number of site replied with their

replica number. In act3 as shown in figure it assigns a replica

number of a site to a message m.

Fig7: Coordinator Delivery Event of Machine.

4.24 Identify Recent Replica Event
Event IdentfyRecentReplica is shown in fig8. In event

IdentfyRecentReplica grd3 ensures that atleast “card(SITE-1)”

sites reply with their replica numbers for performing the

operations requested by the transaction. the guard grd4

ensures that the replica with a maximum number should be

from the range of corepinfo and grd5 ensures that site with a

maximum replica number should be from corepinfo. If all the

above guards true then action takes place, in act1 a set of

maximum value of replica is assigned to a new variable

maxrepno and in act2 we update a transaction with a

maximum replica number.

Participant_Reply ≙

ANY tt, ss, m, mm

WHERE

grd1: ss↦mm ∈ deliver grd2: m∈MESSAGE

grd3: messagetype(mm)=request

grd4: ss≠coordinator(tt) grd5: m∉dom(sender)

grd6: tt∈trans

grd7: mm∈dom(sender)
THEN

act1: sender≔sender ∪ {m↦ss} act2:

messagetype(m)≔reply

 act3: msgrepno(m)≔replicano(ss)

END

Participant_Deliver ≙

ANY ss, mm, tt

 WHERE

grd1: ss ∈ SITE grd2: tt∈trans

grd3: ss≠coordinator(tt) grd4: mm ∈ MESSAGE

grd5: mm∈dom(sender)

grd6: messagetype(mm)=request

grd7: ss↦mm ∉ deliver

THEN

act1: deliver≔deliver ∪ {ss↦mm}

END

Broadcast ≙

ANY ss, mm, tt

WHERE

grd1: tt ∈ trans

grd2: ss ∈ SITE

grd3: ss=coordinator(tt)

grd4: mm ∈ MESSAGE

grd5: mm∉dom(sender)

 grd6: ss↦tt ∈ siteactivetransa
THEN

act1: sender≔sender ∪{mm↦ss}

act2: messagetype(mm) ≔ request

END

Coordinator_Delivery ≙

ANY tt, ss, m, s

WHERE

grd1: m∈MESSAGE grd2: messagetype(m)=reply

grd3: tt∈trans grd4: ss=coordinator(tt) grd5: ss↦m

∉ deliver grd6: s≠coordinator(tt)

grd7: m↦s∈sender

THEN

act1: deliver≔deliver ∪ {s↦m} act2:

totalrepsite≔totalrepsite+1

act3: corepinfo≔corepinfo ∪ {s↦msgrepno(m)}

END

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.6, June 2016

21

Fig8: Identify Recent Replica Event of Machine.

4.25 Transaction submission at Remote

Site Event
The event Remote_Tran_Submit as shown in fig9. models the

submission of transaction at remote sites for changing the

replica number. The guard grd4

∀tx·(tx∈trans∧ (ss↦tx)∈siteactivetransa ⇒ transobject(tt)∩tr

ansobject(tx)=∅)

ensures that the data objects which are required by transaction

tt are available at site ss. The transaction is activated at site ss

through act1 and status of transaction is set to PENDING

through act2.

Fig9: Transaction Submission at Remote Site Event of

Machine.

4.26 Commit Transaction Event
The event CommitWriteTran models the commitment of

update transaction as shown fig10. The transaction is in

active state and it is updated transaction is ensured by grd4

and grd7 respectively. This event updates the replica at

coordinator site act2 and set the status of transaction as

COMMIT act1 and after the commitment of transaction it

removes the transaction tt from the set of siteactivetransa

act3. After the successful commitment of the transaction tt the

replica number is incremented by one as shown in act4.

Fig10: Commit Transaction Event of Machine.

4.27 Abort Transaction Event
AbortWriteTran event is given in fig11. Guard grd3 ensures

that a transaction is in siteactivetransa and status of a

transaction is PENDING as shown in guard grd5. Guard grd7

transaction tt is an updated transaction then as an action it

aborts the transaction tt and removes it from the

siteactivetransa set as shown in act1 and act2.

4.28 Read Transaction Event
ReadTran event as shown in fig12. Models the commitment

of read only transaction where transaction tt is read only

transaction is ensured by grd6. This event performs reading of

Fig11: Abort Transaction Event of Machine.

the objects from the replica located at coordinator site. It set

the status of transaction as COMMIT act1 and then removes

the transaction from siteactivetransa set as shown in act2.

 AbortWriteTran ≙

ANY tt, ss

WHERE

grd1: tt ∈ trans grd2: ss∈updatedsite

grd3: (ss↦tt) ∈ siteactivetransa

grd4: {ss ↦ tt}∈dom(sitetransstatus)

grd5: sitetransstatus({ss↦tt}) = PENDING

grd6: ran(transeffect(tt))≠{ ∅}

THEN

act1: sitetransstatus({ss↦tt})≔ ABORT

act2: siteactivetransa≔siteactivetransa∖{ss↦tt}

END

commitWriteTran ≙

ANY tt, pdb, ss

WHERE

grd1: ss∈updatedsite grd2: tt ∈trans

grd3: pdb=transobject(tt)◁replica(ss)

grd4: ss↦tt ∈ siteactivetransa

grd5: {ss↦tt}∈ dom(sitetransstatus)

grd6: sitetransstatus({ss↦tt})=PENDING

grd7: ran(transeffect(tt))≠ {∅}

grd8: pdb∈dom(transeffect(tt))

THEN

act1: sitetransstatus({ss↦tt}) ≔ COMMIT

act2: replica(ss) ≔ replica(ss)+transeffect(tt)(pdb)

act3: siteactivetransa≔siteactivetransa∖{ss↦tt}

act4: replicano(ss)≔replicano(ss)+1

END

Remote_Tran_Submit ≙

ANY ss, tt

WHERE

grd1: ss ∈ SITE grd2: tt∈trans

grd3: ss≠coordinator(tt)

grd4: ∀tx·(tx∈trans∧ (ss↦tx)∈siteactivetransa ⇒

transobject(tt)∩transobject(tx)=0)

 THEN

act1: siteactivetransa≔siteactivetransa ∪ {ss↦tt}

act2: sitetransstatus({ss↦tt})≔PENDING

END

IdentifyRecentReplica ≙

ANY s, maxval

WHERE

grd1: s∈SITE grd2: maxval∈ ℕ
grd3: totalrepsite=card(SITE)−1

grd4: maxval=max(ran(corepinfo))

grd5: s↦maxval∈corepinfo

THEN

act1: maxrepno≔{maxval}

act1: updatedsite≔updatedsite ∪ {s}

END

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.6, June 2016

22

Fig12: Read Transaction Event of Machine.

4.29 Updating Replica at Remote

Transaction
The event RemoteReplicaUpdate is given in fig13. This event

updates the replica at remote site due to execution of

transaction tt. Site ss is not coordinator site for the transaction

tt is ensured by grd3. Transaction tt is activated at site ss and

its status is PENDING is ensured by grd4 and grd6

respectively.

In this event remotereplica is partial database and defined as:

remotereplica = transobject(tt) ◁ replica(ss)

This event sets the status of transaction as COMMIT as shown

in act1 and then removes the transaction from siteactivetransa

set as shown in act2.

siteactivetransa≔siteactivetransa∖{ss↦tt}

This event updates the replica at remote site act1, set the

status of tt at site ss as COMMIT act2 and remove the

transaction from siteacivetransa act3.

Fig13: Update Transaction at Remote Site Event of

Machine.

4.30 Add Site Event
Add_Site event as shown in fig14. This event adds site ss to a

set of a live sites set if a site is from a set SITE.

Fig14: Add Site Event of Machine.

4.31 Remove Site Event
Remove_Site event as shown in fig15 removes site ss from a

set of live sites if site ss in a set of live set.

Fig15: Remove Site Event of Machine.

5. CONCLUSION
Formal method is one of the techniques which help us

understanding the complex specification and how to achieve

those goals. This model uses formal method for the

verification of transaction execution by using formal

specification language event-B. Event-B is a formal technique

that is used for specifying and reasoning about complex

systems. Rodin tool is a platform where verification of the

program is done. In our model when an update transaction is

submitted to a site doesn’t perform update operation until

unless it finds out the latest site with a maximum replica

number. When a transaction is submitted to a coordinator site

it broadcast a message to all participant sites, and then all

participant sites reply to coordinator site with their replica

number and then coordinator site performs update operation

on a site with a maximum replica number. After updation it

increments the count of replica number by one and if the

operation was read then replica number will remain as it is. In

our model total eighty proof obligations are generated by

rodin tool, out of which seventy two proof are discharged

automatically while eight proof requires interaction with the

system. This model gives clear insight about the verification

of transaction execution in replicated database system.

Remove_Site ≙

ANY ss

WHERE

grd1: ss ∈ livesites

THEN

act1: livesites≔livesites\{ss}

END

Add_Site ≙

ANY ss

WHERE

grd1: ss ∈ SITE

THEN

act1: livesites≔ livesites ∪ {ss}

END

Remote_Replica_update ≙

ANY s, ss, tt, remotereplica

WHERE

grd1: ss ∉ updatedsite grd2: tt∈trans

grd3: ss↦tt∈ siteactivetransa

grd4: {ss ↦ tt}∈dom(sitetransstatus)

grd5: sitetransstatus({ss↦tt})=PENDING

grd6: remotereplica ∈ dom(transeffect(tt))

grd7: remotereplica=transobject(tt) ◁ replica(ss)

grd8: s ∈ updatedsite

grd9: sitetransstatus({s↦tt})= COMMIT

THEN

act1: sitetransstatus({ss↦tt})≔COMMIT

act2: replica(ss) ≔ replica(s)

act3: siteactivetransa≔siteactivetransa∖{ss↦tt}

act4: replicano(ss)≔replicano(s)

END

ReadTran ≙

ANY tt, readval, ss

WHERE

grd1: tt∈trans grd2: ss∈updatedsite

grd3: (ss↦tt) ∈ siteactivetransa

grd4: {ss↦tt}∈dom(sitetransstatus)

grd5: sitetransstatus({ss↦tt})=PENDING

grd6: ran(transeffect(tt))={∅}

grd7: readval=transobject(tt)◁replica(ss)

THEN

act1: sitetransstatus({ss↦tt})≔COMMIT

act2: siteactivetransa≔siteactivetransa∖{ss↦tt}

END

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.6, June 2016

23

6. REFERENCES
[1] http://docs.oracle.com/cd/A59447_01/nt_804ee/doc/data

base.804/a58227/ch_repli.htm

[2] http://www.loria.fr/~mery/erasmusmaynooth/n1.pdf

[3] Jean-Raymond Abrial and Louis Mussat. Introducing

dynamic constraints in B In Bert [BER 98], pages 83–

128.

[4] Jean-Raymond Abrial. The B book. Cambrige University

Press, 1996.

[5] Jean-Raymond Abrial. B #: Toward a synthesis between

Z and B In Bert et al. [BER 03], pages 168–177

[6] Raghuraj Suryavanshi, Divakar Yadav “Rigorous Design

of Lazy Replication System Using Event-B”

IJCATM : www.ijcaonline.org

