
International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.8, June 2016

6

A Framework for Model Driven Transformation

Engineering towards Software Architecture and

Performance

Ahmad Mateen
University of Agriculture

Faisalabad, 38000 Pakistan

Alia Tabassum
University of Agriculture

 Faisalabad, 38000 Pakistan

ABSTRACT

This paper presents a different experience and application of

defining and implementing an Agile Development Process

(ADP) using Model Driven Architecture (MDA) series. This

process and its implementation inherit the merits of both

methodologies. The research demonstrates that combining

MDA practices with ADP can significantly moderate

software development cycle time and increase productivity

and quality. This approach offers several other advantages

including Platform-independent models which are used to

promote the system endurance and flexibility in deployment.

Executable models are assembled to increase the level of

consideration, quality and efficiency. Change of models that

are utilized to implement and allow the advanced run-time

execution through programmed improvements that is not

practical with transcribed code. The principles of modeling

describe that the transformation should also explicitly

modeled because it is at the very core of Model Driven

Engineering. Transformations allow synchronization,

analyses of execution, optimization, code synthesizing,

composition and developing models.

Keywords

Agile Development Process (ADP), Computation Independent

Model (CIM), Model Driven Architecture (MDA), Platform

Independent Model (PIM), Platform Specific Model (PSM).

1. INTRODUCTION
Agile process methodologies for software development take

an innovative, lightweight approach features in designing and

producing applications. These practices solve the common

problems of developing software by encouraging and

facilitated the direct user involvement, small and frequent

release, and rapid iterations by evolving requirements of client

or customer in the development process [1].

The numerous agile software development approaches have

advanced following their starting and even requested high

degree to enhance the nature of the product item. Some of the

well-known agile development strategies are Extreme

Programming (XP), Scrum, Crystal Methods, Feature Driven

Development (FDD) and Test Driven Development (TDD).

These approaches are not the same as conventional

programming procedures and help the associations to meet the

difficulties of this period. [7]

The Model Driven Architecture (MDA) is a structure for

programming improvement characterized by the Object

Management Group (OMG) [6]. Inside MDA the product

advancement every procedure is driven by the activity of

modeling the software system which provides the benefits of

Productivity, Portability and Interoperability. There exist a

few MDA-based [3] and additionally agile [8] approaches in

the literature; however a MDA and agile development are not

a solid programming improvement procedure. Accordingly,

with regards to develop software with an agile development

process using model driven architecture [4] it is feasible

either to introduce agility into current MDA-based strategies

through agile practices and rules or to incorporate MDA

standards and development tools into existing agile

programming, which are both evident samples of extension

based system designing methodology [3].

2. BACKGROUND

2.1 Agile Process Development
Requirements constantly changes according to the business

need. In this way, programming architectures ought to have

the capacity to oversee business forms and have the ability to

meet the future modifications and business necessities. The

field of programming improvement reports precisely the

difficulties of an eccentric, unsettled business and innovation

environment. In this manner, the inquiry is how to better

switch architectural modifications for achieving high quality

[9].

Principles of Agile Philosophy [3]

 Higher customer satisfaction

 Facilitation of changes in requirement

 Frequent delivery of work in a shorter time.

 Collaboration of client and developer

 Self-organized expert team

 Direct conversation of team members

 Main extent of progress is working software.

 Agile processes support maintainable progress.

 Constant consideration to nominal excellence and

good design of the product

 The best architectures, requirements and designs

 At regular intervals the main focus on how to

become more effective in productivity and quality

2.2 Model driven Architecture
One of the fundamental points of the MDA is to segregated

configuration from construction modeling. As the ideas and

innovations used to acknowledge outlines and architectures

have changed at their own pace, blending them permits

framework designers to look over the best and most fitting in

both areas. The design reports the useful prerequisites while

architecture gives the foundation through which non-

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.8, June 2016

7

functional necessities like versatility, performance and

reliability are figured out [6].

From the conventional life cycle, the MDA advancement life

cycle does not look altogether different. The items are formal

models, similar to a few models can be comprehended by

computers so one of the significant contrasts is the way of the

work that is made during the improvement process [2].

3. RESEARCH PROBLEM
This study states an important issue in software engineering

that is a gap in IT and Business. To improve the development

process of software systems; there should be a framework to

produce new competencies that can help to reduce the gap

effectively.

4. ANTICIPATED CONTRIBUTION
For project development, a framework that relates MDA to

ADP will be presented as a complete system in this paper. To

test this framework a number of case studies will be used in

the form of small software projects.

5. MODEL TRANSFORMATION
A typical methodology towards making adaptable, dynamic

business forms and light-footed application is the service

oriented computing style a dispersed frameworks is key to

make utilization of an adaptable and versatile platform that

can react to new necessities in a proficient way. In this

manner, the use of suitable architectural styles for the outline

of programming frameworks is a task [9].

Conversely, MDA changes are constantly executed by tools

whereas customarily the changes from model to model, or

from model to code, are done principally by hand. There are

numerous tools that have possessed the capacity to change a

PSM to code; there is something new in MDA is that the

change from PIM to PSM is mechanized too [2].

It can incorporate any modeling language that is utilized with

domain specialists with MDE by aiding from mechanized

model verification and transformation. MDA does not

maintain a strategic distance from transformative strategies

with an iterative and incremental advancement process. These

can utilize the MDA tool to create and continue iteratively and

incrementally without issues, especially without MDA-related

ones [10].

All MDA modeling language are formally determined in

Model Object Facility (MOF) which is a stone strong

formation. UML utilized for model representation are likewise

standardized, similar to the specification language for model

changes. UML was intentionally kept brief, without area

specifics rather it offers lightweight extensibility, allowing the

production of UML profiles for meta models formally

determined in the MOF. It can make profiles naturally

utilizing MDA [5].

The idea of MDE is to constrain the adaptability for

effortlessness and profitability. Subsequently it is unrealistic

to make each desired thing however this is never an issue

unless it utilize a traditional methodology; in fact, components

outside the tools were the issue. It did lead me to the

assumption that if MDD device achieves a sure level then

improvement is not the troublesome part any longer. When

there is a model then from just with a single tick send to make

the last application. However the testing part is to turn

thoughts and/or business issues into such a model. Imperative

components in this procedure are requirement gathering and

project management.

6. BASIC FRAMEWORK

Fig 1 Overview of the basic MDA framework

Fig.1 depicts major elements that participate in the MDA

framework: models, PIMs, PSMs, languages, transformation

definitions, and tools that perform transformations. These

components fit together in the essential MDA structure. it

summarize the elements and their role below:

 A model is a depiction of a framework written in all

around characterized language.

• Platform Independent Model which defines framework

with no learning of the last usage stage

• Platform Specific Model which defines framework

with full information of the last usage stage.

 A transformation definition defines how a model in a

source dialect can be changed into a model in target

dialect.

 A transformation tool performs a change for a particular

source model as indicated by a change definition [2].

The PSM and PIM are the most key roots from the designer's

perspective. A designer puts his attention on adding to a PIM,

which make the product framework at high level of

abstraction. In the next stage he chooses one or more

mechanisms that can perform the change on the PIM that has

been developed according to certain requirement.

7. PROPOSED APPROACH
Proposed experiment case is to relate MDA approach with

Agile Development principles which are used in the process

of creation of PIM. With the agile methodology it start from a

simple model and make the model reusable.

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.8, June 2016

8

Fig 2 Overview of the framework

 For this purpose there is a need to create a generic PIM which

can be adapted to the specific software system when needed.

The following components need to be developed:

 Use Cases

 State Model (state diagrams)

 Class Diagram: Entity and Relationship (their attributes

and integrity constraints)

 System Behavior Model (operations)

In the development process, just before a complete reusable

model for different project, it has to include different kind of

models and approaches to enhance the productivity.

Depending on particular project there can be different

background knowledge like domain model. To support

consistency between all models, principles of agile modeling

and MDA should be applied.

Fig 3 MDA& ADP relation

The Fig. 3 identifies some Executable Models as following:

1. Requirement Model: its aim to organize and monitor the

project requirements according to CIM and Concept

phase.

2. Analysis Model: its aim to identify modeling and

transformation needs according to PIM and Inspection

phase.

3. Design Model: its aims to obtain the modeling and

transformation specifications according to PSM and

Construction phase.

4. Implementation Model: its aim to tool provision and

metadata administration facilities prepared to utilize

Code and Transition phase.

5. Project execution: its aim to produce the vital

programming artifacts and the final items.

Fig.3 portrays how the arrangement has been organized in

diverse stages. These stages are helpful to comprehend and to

represent the conditions between the workouts. The periods of

this philosophy identify with the accessible and required

aptitude and accordingly these stages can be specifically

connected with the dividing of the ADP and MDA. 1st and

2nd stage mainly performed by knowledge facilitators, 3rd

and 4th stages are essentially performed by information

constructers while 5th stage is mostly performed by learning

clients. It additionally demonstrates that numerous conditions

are recognized between the development periods of this

strategy, which implies that these stages ought to be performed

iteratively and incrementally so the criticism from the

execution exercises to the arrangement exercises and the other

way around ought to be performed in a powerful way. This

accessibility could be known as Transformation of model in

which model-to-model changes, code generation systems and

very much characterized traceability methodologies are

essential. Continuous integration and testing are two vital

issues to be followed in this framework.

8. RESULTS
A number of small projects related to academics are used as

case studies that are shown in Table 1. The table demonstrates

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.8, June 2016

9

that in CIM the use case diagrams are mostly used. Whereas

all UML models aside from component and deployment

models are used in PIM while in PSM there are class and

component diagrams. Fig. 4 classifies the executable molding

diagrams in project case studies. From the accepted agile

principles and perspective, various projects articulated the

standard setup of code and provided meaningful remarks.

Which will also shows It gets to be conceivable to

straightforwardly move from model to code with the

emergence of MDA tools, because changing a model means

changing the software thus the MDA approach can support

ADP. Just like the source code, this spreads models from

being a part of documentation simply turning out software

design. Without a doubt a model is just worth building in the

event that it specifically accomplishes the last objective of

building a working framework

Table 1. Modeling Diagrams in Project Case Studies

Project

Title

Process

Model
CIM PIM PSM

Student

Records

System

Scrum
Use

Case

Activity

Diagram

Class

Diagram,

Sequence

Diagram

Career Path XP

Use

Case,

DFD

Activity

Diagram,

Sequence

Diagram,

DFD

Class

Diagram

Hospital

Information

Management

System

Scrum

Use

Case,

DFD

Sequence

Diagram,

Class

Diagram,

DFD

Component

Diagram

Library

Management

System

XP
Use

Case

Sequence

Diagram,

Class

Diagram,

Component

Diagram

Pizza Order

Management

System

XP
Use

Case

Class

Diagram,

Activity

Diagram

Component

Diagram

Fig 4 Modeling Diagrams in Project Case Studies

9. CONCLUSION
This paper provides the idea of combining MDA approach

with ADP methodologies. It would ponder that the advantages

of MDA are intensely linked with the utilization of an agile

methodology. By identifying the well formalized knowledge it

would be prove that MDA and agile are content pair. Because

of the utilization of high state models MDA empowers close

shared effort with the customer and provide short repetitions

because much of the development process is programmed.

Future work around there can prompt another framework

which could be connected different methodologies of agile

development process..

10. REFERENCES
[1] Ahmed A., Ahmad S., Ehsan N., Mirza, E.and Sarwar S.

Z., 2010. “Agile Software Development: Impact on

Productivity and Quality,” in Proc. ICMIT IEEE

Software Int. Conf., pp. 287 – 291.

[2] Kleppe A., Warmer J., Bast W., April, 2003. The Model

Driven Architecture: Practice and Promise, Addison

Wesley, pp. 45-68.

[3] Beck K., Petal, 2001. “Principles behind the Agile

Manifesto”, Agile Alliance, Available: http://

agilemanifesto.org/principles.html[last visited 28-7-15]

[4] Y. Zhang and S. Patel, "Agile Model-Driven

Development in Practice," IEEE Software,vol. 28, no. 2,

pp. 84-91, Apr. 2011.

[5] D. D. Ruscio, L. Iovino, and A. Pierantonio, “Coupled

Evolution in Model-Driven Engineering,” IEEE

Software, vol. 29, no.6, pp. 78-84, Nov2012.

[6] G. Bergmann, I. Ráth, J. Varró, and D. Varró. “Change-

driven model transformations,”Software and Systems

Modeling,vol. 11, no.3, pp. 431-461, July 2012.

[7] “Introduction to Agile Development” Available:

www.serena.com/docs/repository/solutions/intro-to

agiledevel.pdf [last visited 3-8-15]

[8] T. Kühne, G.Mezei, E.Syriani, H.Vangheluwe, and

M.Wimmer,“Explicit transformation modeling. Models

in Software Engineering,” in Lecture Notes in Computer

Science: Models in Software Engineering, vol. 6002, no.

10, pp. 240–255,Oct. 2009.

[9] R. Mordinyi, E. K¨uhn, and A. Schatten., “Towards an

Architectural Framework for Agile Software

Development,” in Proc. ECBS IEEE Software Int. Conf.,

2010, pp. 276-280.

[10] Woodside M., Franks G., and Petriu D. C., “The Future

of Software Performance Engineering,” In Proc.

2007IEEE Int. Conf. Software Engineering, vol. 32,

no.10, pp. 171-187.

5
3

3

2

3

1

2

2

3

0

2

4

6

8

10

12

CIM PIM PSM

Use case
Acvtivity Diagram
Class Diagram
Sequence Diagram

IJCATM : www.ijcaonline.org

