
International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.9, June 2016

24

Is it Possible to Develop a Language without Exception

Handling?

Richa Baijal
Student, M.Tech,

 Computer Science and Engineering
Career Point University,
Alaniya, Jhalawar Road,

Kota-325003 (Rajasthan)

ABSTRACT

In this paper, a knowledge of library files that are used to

handle exceptions in different languages is provided. The

languages taken C,C++ and Java are taken as the reference

languages. This paper provides the knowledge about library

files used to handle exceptions in these languages which are

very important from a programmer/researchers‟point of view.

General Terms

Library files in C, C++ and Java ; error handling in C,

Exceptions.

Keywords

Exceptions, Library files in C ,C++,Java; error handling,

exception handling.

1. INTRODUCTION
Abnormal condition which occurs during runtime during the

execution of a program is called an exception/runtime error.

Runtime error is in a way different from exception. If there is

a runtime error, it is due to some hardware malfunction

whereas an exception is caused due to improper logic

provided in the program. When such a condition is

encountered, it has to be resolved by the language

constructs/compilers so that reliability of the language is

maintained.

2. STUDY OF LANGUAGES TO GET

AN IDEA ABOUT THE LIBRARY

FILES THAT HANDLE

EXCEPTIONS/ERRORS

2.1 Error Handling In C :
C does not provide direct support for error handling . C

functions return -1 or NULL when a error occurs in the

program. They also set an error code errno which makes a

programmer understand that error has occurred in the program

. Let us consider an example and then understand the

functions and header files associated with it.

Example :

#include <stdio.h>

#include <errno.h> // Various Error Codes Are Defined in

This Header File

#include <string.h>

extern int errno ;

int main ()

 {

 FILE * p;

 int errnum;

 p = fopen ("alpahbet.txt", "rb");

 if (p == NULL)

 {

 errnum = errno;

 fprintf(stderr, "Value of errno: %d\n", errno);

 perror("Error printed by perror");

 fprintf(stderr, "Error opening file: %s\n", strerror(errnum));

 }

 Else

 {

 fclose (p);

 }

 return 0;

}

Well, now just have a quick look at the program and let us

understand it simply in one line :

This program will return a „0‟ if everything goes well i.e the

file which i am looking for is found.

But,unfortunately things don‟t go well for me. I get the

following Output for this program :

Output :

Value of errno : 2

Error printed by perror : No such file or directory

Error opening file: No such file or directory

Pretty Cool ! Now, let us understand how is it achieved in C.

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.9, June 2016

25

Well, C has a header file to handle the errors <errno.h> the

same we included while writing our program. This is a library

file in C and contains macros which identify what type of

error has occurred by displaying the no. In integer format.Let

us have a look at this macros list :

Macros Error No. Type of Error

#define EPERM 1 Operation Not

permitted

define ENOENT 2 No such file or

directory

define ESRCH 3 No such process

define EINTR 4 Interrupted system

Call

define EIO 5 I/O Error

define ENXIO 6 No such device or

address

define E2BIG 7 Argument list too

long

define

ENOEXEC

8 Exec format error

define EBADF 9 Bad file number

define ECHILD 10 No child processes

define EAGAIN 11 Try again

define ENOMEM 12 Out of memory

define EACCES 13 Permission denied

define EFAULT 14 Bad address

define

ENOTBLK

15 Block device

required

define EBUSY 16 Device or resource

busy

define EEXIST 17 File exists

define EXDEV 18 Cross device link

define ENODEV 19 No such device

define ENOTDIR 20 Not a directory

define ISDIR 21 Is a directory

define INVAL 22 Invalid argument

define ENFILE 23 File table overflow

define EMFILE 24 Too many open

files

define ENOTTY 25 Not a typewriter

define ETXTBSY 26 Text file busy

define EFBIG 27 File too large

define ENOSPC 28 No space left on

device

define ESPIPE 29 Illegal seek

define EROFS 30 Read only file

system

define EMLINK 31 Too many links

define EPIPE 32 Broken pipe

The macro list clearly defines our error code no.2 i.e. it is

unable to find the file we specified.

It says : No such file or directory.

There are 131 such error codes in C defined under <error.h>

library.

Let us quickly examine two more functions and their work in

error handling :

1. perror() : It returns the textual value of current

errno.

As in our example, error code is 2. Since,we have

used the perror() function it is returning the string

value for the corresponding error code.

2. Strerror() : It returns the pointer to the textual

representation of current errno value.

Stderr is a file stream also called as Standand Error Stream

which is used to output all the errors.

2.2 Exception Handling in C++ :
Exception is a condition that occurs during runtime. In C++

,an exception is handled using three keywords or block

namely try catch and throw.[2]

1. throw : A program throws an exception when it

first encounters it. It shows that the program has

encountered a problem.

2. catch : catch represents the catching of an

exception. In other words,it specifies the place in

the program where you want to handle the problem.

3. try :A try block identifies the block of code for

which particular exceptions will be activated.

It is followed by one or more catch blocks.

Let us take a n example to understand Exception Handling in

C++ :

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.9, June 2016

26

Example:

#include <iostream>

using namespace std;

double division(int p, int q)

{

 if(q == 0)

 {

 throw "Division by zero condition!";

 }

 return (p/q);

 }

int main ()

{

 int k = 50;

 int l = 0;

 double m= 0;

 try

 {

 m = division(k, l);

 cout << m << endl;

 }

 catch (const char* msg)

 {

 cerr << msg << endl;

 }

 return 0;

}

Output : Division by Zero condition !

Since, an exception of type const char* is raised, therefore

while catching the exception it is mentioned in catch block .

A short note about using namespace standard routine here :

The std namespace is special; it is short for the word

"standard." The built in C++ library routines are kept in the

standard namespace. That includes stuff like cout, cin, string,

vector, map, etc. Because these tools are used so commonly,

it's popular to add "using namespace std" at the top of your

source code so that you won't have to type the std:: prefix

constantly. And because these functions are kept in a

namespace, if you really want to use "vector" as a variable

name, you still can. Namespaces give you more freedom to

use short, accurate names.

Let us now study what type of exceptions are handled by

C++ :[3]

There are standard exceptions which are defined in

<exception> header file in C++. They are arranged in parent-

child class hierarchy as shown :

The table provides a definition of these exceptions in brief :

Exception Description

std::exception An exception and parent class of all

the standard C++ exceptions.

std::bad_alloc This can be thrown by new.

std::bad_cast This can be thrown

by dynamic_cast.

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.9, June 2016

27

std::bad_exception This is useful device to handle

unexpected exceptions in a C++

program

std::bad_typeid This can be thrown by typeid.

std::logic_error An exception that theoretically can

be detected by reading the code.

std::domain_error This is an exception thrown when a

mathematically invalid domain is

used

std::invalid_argument This is thrown due to invalid

arguments.

std::length_error This is thrown when a too big

std::string is created

std::out_of_range This can be thrown by the at

method from for example a

std::vector and

std::bitset<>::operator[]().

std::runtime_error An exception that theoretically can

not be detected by reading the code.

std::overflow_error This is thrown if a mathematical

overflow occurs.

std::range_error This is occured when you try to

store a value which is out of range.

std::underflow_error This is thrown if a mathematical

underflow occurs.

C++ also provides a feature where user can override the

exception class and can define a new exception :

Example: Overriding std :: exception class to create your own

exception

#include <iostream>

#include <exception>

using namespace std;

struct MyException : public exception

{

 const char * what () const throw ()

 {

 return "C++ Exception";

 }

};

int main()

{

 try

 {

 throw MyException();

 }

 catch(MyException& e)

 {

 std::cout << "MyException caught" << std::endl;

std::cout << e.what() << std::endl;

 }

 catch(std::exception& e)

 {

 //Other errors

 }

 }

Output :

 MyException caught

C++ Exception

Use of what () : what() is a public method provided by

exception class and it has been overridden by all child

exception classes. It returns the cause of an exception.

2.3 Exception Handling in Java
There are two types of exceptions in Java.

1. Checked Exceptions :All exceptions other than runtime

exceptions are referred to as Checked Exceptions.

Examples of checked Exceptions :

(i) ClassNotFound Exception

(ii) Illegal AccessException

(iii) NoSuchFieldException

(iv) EOFException, etc.

2. Unchecked Exceptions : All run-time exceptions are

called unchecked exceptions.

Examples of unchecked Exception :

(i) Arithmetic Exception

(ii) ArrayIndexOutOfBoundsException

(iii) NullPointer Exception

(iv) NegativeArraySizeException,etc.

Exception Heirarchy in Java :[4,6]

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.9, June 2016

28

Heirarchy of Java exception Classes :[4,5]

So far,we have seen seen exception classes or macros in C++

and C respectively. Java is awidely used language with wide

no. Of classes defined to handle exceptions. Here is a look :

Java uses 5 keywords to handle exceptions.

These are :

1.try:-In try block we enclose the code that might throw an

exception.Try block is necessary followed by a catch of

finally block in Java.

2.catch:Catch block is used after the try block.It is used to

handle the exception.

3.finally : finally block is written after throw/throws block. It

is always executed whether an exception occurs or not.

4. throw: It is used to throw an exception that is being caught

in the program.

5.throws: If a method cannot handle the checked exception,

the method must declare it using throws keyword .

Let us make exception handling in Java more clear by this

example:

public class ExcepTest{

 public static void main(String args[]){

 int a[] = new int[2];

 try{

 System.out.println("Access element three :" + a[3]);

International Journal of Computer Applications (0975 – 8887)

Volume 143 – No.9, June 2016

29

 }catch(ArrayIndexOutOfBoundsException e){

 System.out.println("Exception thrown :" + e);

 }

 finally{

 a[0] = 6;

 System.out.println("First element value: " +a[0]);

 System.out.println("The finally statement is executed");

 }

 }

}

The result of above program will be :

Output :

Exception thrown :java.lang.ArrayIndexOutOfBoundsException: 3

First element value: 6

 The finally statement is executed

User Defined Exceptions :

Java facilities the programmers to define exception methods

themselves. Although the important points to be kept in mind

while doing so are :

1. All exceptions must be a child of Throwable class.

2. If you are writing a checked exception,that is

automatically enforced by the handle,you should

extend the Exception class.

3. If you are writing a runtime Exception, you need to

extend the RuntimeException class.

3. FUTURE AREA OF RESEARCH

WORK
Many modern languages provide rich exception handling

features .Three of them,we have gone through. The curiousity

revolves around the concept: “Is it possible to design a

language without exception handling feature ?”.If it is

done,what will be gained ?

Although, Swift language from Apple does not provides

exception handling feature but it does provide assertion and

return values which is a kind of error handling mechanism

introduced by C.

Why this kind of programming world is desirable ?

Well, a simple answer to this question would be that if

processor architecture can be reduced from CISC to RISC ;

then why not this feature ? Certain algorithms can definitely

enhance this idea of a programming language without

exception handling.

4. CONCLUSION
Error handling and exception handling library files of

different languages have been studied to gain a new lookout

of developing a language that will not handle exceptions in

future and will seem an equally reliable language then also.

5. REFERENCES
[1] Yashavant P. Kanetkar . Let Us C ; Infinity Science

Press, 2008

[2] Yashavant P. Kanetkar . Let Us C++ ; Infinity Science

Press, 2008

[3] Nicolai M. Josuttis,The C++ Standard Library: A

Tutorial And Reference

[4] Stephen Stelting,Robust Java: Exception Handling,

Testing, and Debugging; Prentice Hall PTR, 2004.

[5] Herbert Schildt,Java2:The Complete Reference.

[6] Bruce Eckel,Thinking In Java;Pearson Education,India.

IJCATM : www.ijcaonline.org

