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ABSTRACT 
The main goal of this paper is to present an indirect adaptive 

fuzzy control of discrete-time non affine nonlinear systems 

with parametric variations. The synthesis of the state feedback 

control law is based on the Takagi-Sugeno (T-S) fuzzy models 

developed by a local description of the considered system. In 

the first step, the model parameters locally estimated by the 

fuzzy model are adjusted using gradient method. In the second 

step, the local control gain based on pole placement is 

computed. After that, the global state feedback control law is 

applied to the nonlinear system. Based on the Lyapunov 

stability theory, the asymptotic stability of the proposed state 

feedback adaptive fuzzy control method is studied to ensure 

the global stability of the system. To illustrate the 

performance of the proposed controller, inverted pendulum 

and two links robot manipulator arm are presented. 

Keywords 
Indirect adaptive control, T-S fuzzy model, Discrete-time 

nonlinear systems, Stability analysis. 

1. INTRODUCTION 
The control of nonlinear systems has been the subject of many 

research works [1]. Fuzzy systems have been successfully 

applied to many control problems because they do not need an 

accurate mathematical model of the system under control [2]. 

In fact, fuzzy control algorithms are introduced based on the 

T-S fuzzy model [3-6]. The basic idea of this method is to 

represent the complex nonlinear system by linear local 

models. Then, for each one a state feedback control law is 

calculated. Thereafter, the global control law can be obtained 

either by combining all local control laws [4]. This design, 

called Parallel Distributed Compensation (PDC), Simplicity is 

the major advantage of this method.  

In the literature of fuzzy adaptive control, many authors are 

interested in affine continuous systems. They integrate other 

techniques like the sliding mode control to develop an update 

parameters law such as [7]. Some others are based on the 

recursive least square method to propose update laws[8].Wang 

and Tanaka have discussed the design and the stability of 

discrete Single-Input Single-Output fuzzy dynamic control 

systems.  The main goal of this work is to propose an indirect 

adaptive algorithm to elaborate a suitable fuzzy control law 

for discretes non affines nonlinear systems based on T-S fuzzy 

models. 

The paper is organized as follows: In Section 2, the 

description of the T-S fuzzy model is formulated. Section 3 

presents the proposed scheme of an indirect adaptive fuzzy 

control. In section 4, the stability conditions of the proposed 

method are discussed. Section 5, two numerical examples are 

presented to check the performance of the studied approach. 

Finally, some conclusions are presented in the last section. 

2. PROBLEM STATEMENT 
Consider the following discrete-time nonlinear dynamic 

system: 

( 1) ( ( ), ( ))

( ) ( ( ))

x k f x k u k

y k g x k

 



                               (1) 

where f and g are two nonlinear functions.
 

 1 2( ) ( ) ( )... ( ) ,  u( )n

T n m
x k x k x k x k k    

and ( )
q

y k  are the measurable state vector, the input 

vector and the system output vector, respectively at the 

discrete time k . 

2.1.Takagi-Sugeno Fuzzy Model 
The nonlinear system (1) can be represented by a Takagi-

Sugeno fuzzy dynamic model. It is described by a linear local 

model for each fuzzy rule [4]. 

The
th

i rule of the fuzzy model has the following form: 

 

1 1:  ( )    ...  ( )   

( 1) ( ) ( ) ( ) ( )
 

( ) ( ) ( )

1...

i

i p ip

i i

i

R if z k is M and and z k is M

x k A k x k B k u k
then

y k C k x k

i r

  





     (2) 

 Here, ipM
is the fuzzy set and r is the number of 

fuzzy rules,
( ) n n

iA k 
,

( ) n m

iB k 
and 

( ) q n

iC k 

are the state matrices, the input matrix and the output matrix, 

respectively. 1( ), ... ( )pz k z k
are the premise variables. The 

global fuzzy model of the non stationnary system has the 

following form: 

 

  
1

( 1) ( ) ( ) ( ) ( ) ( )
r

i i i

i

x k z k A k x k B k u k


  
  (3) 

 

  
1

( ) ( ) ( ) ( )
r

i i

i

y k z k C k x k



                      (4) 
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 
 

 
 

 

1

1

( )
( ) ,    0 ( ) 1,

( )

and   ( ) 1, 1,2...

i

i ir

i

i

r

i

i

w z k
z k z k

w z k

z k i r

 







  

 




     (5) 

where
 ( )iw z k

is the attributed weight for each rule
iR  

     ,

1

( ) ( ) , ( ) 0, 1,2...
r

i i j j i

j

w z k z k w z k i r


  

 , ( )i j jz k
is the appartenance degree of the membership 

function  to the fuzzy set
. i jM
  

The nonlinear mathematical model is assumed known. 

Different local models are obtained by linearization around 

several operating points. The Jacobian matrices could be 

obtained using linearization method[1]: 

 
     0 0 0 0 0 0, , ,

, ,

i i i i i i

i i i

x u x u x u

f f g
A B C

x u x

  
  
  

     (6) 

2.2.State Space Feedback Fuzzy Control 
In the PDC design, each control rule is designed from the 

same basic rules as the fuzzy model. The
thi fuzzy rule of the 

feedback state space controller is given as follows: 

 

1 1:   ( )   ...  ( )   

 ( ) ( )       1,2...

i

c i p ip

i i

R if z k is M and and z k is M

then u k K x k i r  
     (7) 

iK
is the state feedback gain of the

th
i local model which is 

computed to place all closed-loop eigenvalues of local models 

inside the unit circle at the appropriate values. 

The global nonlinear fuzzy controller is presented by: 

 

 

 

1

1

1

( ) ( )

( )  

( )

( ) ( )

r

i i

i

r

i

i

r

i i

i

w z k K x k

u k

w z k

z k K x k







 

 






                         (8) 

by substituting (8) into (3) the global control in closed loop 

can be written as: 

1 1

, ,

, 1

( 1) ( ) ( ) ( ) ( ) ( )

( ) ( )

r r

i i i j j

i j

r

i j i j

i j

x k k A k B k k K x k

k G x k

 



 



  
     

  



 


 (9) 

where ,       , 1,...,i j i i jG A B K i j r  
 (10) 

3. INDIRECT ADAPTIVE FUZZY 

COPNTROL 
In this section, the adaptive control design for the dynamic 

fuzzy system will be presented. 

3.1.Fuzzy Controller Design 
The indirect adaptive fuzzy control scheme is illustrated by 

fig1. The gain in the control law given by equation (8)is 

calculated using matrices iA
and iB

 which are unknown and 

variable over time. So, based on the assumption that Fuzzy 

models are universal approximators [9], iA
and iB

can be 

replaced by their estimates
ˆ

iA
and

ˆ
iB
. 

 

 

 

 

 

Fig 1:  Indirect adaptive fuzzy control 

3.2.Estimation algorithm 
Adaptation laws are determined based on the gradient method 

to minimize the quadratic criterion
( ).J k

The error between 

the model and the plant is used to adjust on-line the 

parameters of the fuzzy model so that the error converges 

toward zero.  

1
( ) ( ) ( )

2

TJ k e k e k
                                                   (11) 

The prediction error
( )e k

is defined as: 

 
1

ˆ( ) ( 1) ( 1)

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( 1)
r

i i i

i

e k x k x k

k A k x k B k u k x k


   

   
      (12) 

Then, the following adaptation algorithm can be deduced: 

ˆ ˆ( 1) ( ) ( ) ( ) ( ) ( )T

i i iA k A k k k e k x k   
                (13) 

ˆ ˆ( 1) ( ) ( ) ( ) ( ) ( )T

i i iB k B k k k e k u k   
                (14) 

with

2

1

( )
( )

( )( ( ) ( ) ( ) ( ))
r

T T

i

i

k
k

k x k x k u k u k










      (15) 

where iA
and iB

are the estimation errors matrices, defined as: 

ˆ( ) ( ) ( )i i iA k A k A k 
                          (16) 

ˆ( ) ( ) ( )i i iB k B k B k 
                          (17) 

3.3.Stability Analysis 
To demonstrate the stability of the closed-loop fuzzy control 

system which consists of the fuzzy model and the PDC 

controller, the following candidate Lyapunov function is 

defined: 

i
K  

Adjustement mechanism 

( )kx  

( )ˆ kx  

( )u k  
Plant 

Adjustable T-S 

Fuzzy model 

( )ke  
ˆ ˆ,

i i
A B  

+ 
- 

Fuzzy controller 
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1 2 3( ) ( ) ( ) ( )V k V k V k V k  
                           (18) 

where  

1( ) ( )V k x k
                         (19) 

2

1

( ) ( ) ( )
r

T

i i

i

V k tr A k A k


     

                            (20) 

3

1

( ) ( ) ( )
r

T

i i

i

V k tr B k B k


     

                                 
(21) 

 Theorem 

Consider the system described by (9), the control law (8) and 

the adaptation algorithm (13)-(15), a sufficient stability 

conditions for ensuring asymptotic stability of the closed loop 

follows: 

max( ) 1ii

r

i
k  

                        (22) 

0 ( ) 2k 
                         (23) 

 Proof 

To ensure stability for the proposed scheme, the convergence 

conditions are obtained using the following inequalities: 

 1( ) 0V k 
 and 32 ( ) ( ) 0V k V k   

                 (24) 

For the first term, that concerns the dynamic fuzzy system 

expressed by (19), the demonstration of its stability condition 

is as follows: 

1 1 1( ) ( 1) ( ) ( 1) ( )V k V k V k x k x k      
 

, ,1
,

( ) ( )( ) ( )i j i j

r

i j

k G x kV k x k  

 

, ,1
,

( ) (( ) 1 )i j i j

r

i j
V kk Gk x

 
 

 


 

m x1 a( ) 1( ) ( )i i

r

i
V x kkk   

 




  

So   1( ) 0V k 
  if   

max( ) 1 0ii

r

i
k   

 (25) 

where maxi


is the maximum eigenvalues of the estimates of 

the matrix
,i j

G
for 

, 1...i j r
given by expression (10). 

By adopting the adaptation laws (13) and (14) and considering 

the equations (16) and (17), and by assuming that the system 

parameters are slightly variable through time, the following 

expressions are deduced: 

( 1) ( ) ( ) ( ) ( ) ( )T

i i iA k A k k k e k x k    
 (26) 

( 1) ( ) ( ) ( ) ( ) ( )T

i i iB k B k k k e k u k    
 (27) 

To manipulate (20) and (21), the following properties of trace 

are used: 

 
  ( ) ( )   for any , n ntr AB tr BA A B  

 

  ( ) ( ) ( )  for any , n ntr A B tr A tr B A B    
 

1  ( )     for any ,T T ntr yx x y A B  
 

 

2 2 2

1 1

( ) ( 1) ( )

( 1) ( 1) ( ) ( )
r r

T T

i i i i

i i

V k V k V k

tr A k A k tr A k A k
 

    

            

 

 

 

 

 

2

1

1

2

1

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

r T
T T

i i i i

i

r
T

i i

i

r
T T

i i

i

r
T

T T

i i

i

V tr A k k k e k x k A k k k e k x k

tr A k A k

V tr A k k k e k x k

tr k k e k x k k k e k x k

   

 

   









         



  

       









 

 



 

 

3 3 3

1

1

3

1

2 2

1

( ) ( 1) ( ) ( 1) ( 1)

( ) ( )

2 ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

r
T

i i

i

r
T

i i

i

r
T T

i i

i

r
T T

i

i

V k V k V k tr B k B k

tr B k B k

V k k u k B k e k

k k u k e k e k u k

 

 









        

   

  











 

 



  

  

2 3

1

2 2

1

2 ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

r
T T T T

i i i

i

r
T T T T

i

i

V V k k x k A k u k B k e k

k k x k e k e k x k u k e k e k u k

 

 





     

 





 

Or 

 
1

( ) ( ) ( ) ( ) ( ) ( )
r

T T T T T

i i i

i

k x k A k u k B k e k


   

 

  

2 3

1

2 2

1

2 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

r
T

i

r
T T T T

i

i

V V k e k e k

k k x k e k e k x k u k e k e k u k



 





     









 

2 3

1

2 2

( ) 2 ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

r
T

i

T T

i

V V e k k

k k x k x k u k u k e k



 



     






 

 

2 3

2 2

1

0 ( ) 2 ( )

( ) ( ) ( ) ( ) ( ) ( ) 0
r

T T

i

i

V V k k

k k x k x k u k u k



 


     

  
 



International Journal of Computer Applications (0975 – 8887) 

Volume 143 – No.9, June 2016 

46 

 

 

2

1

2

1

( ) 0

2 ( ) ( ) ( ) ( ) ( ) ( ) 0

( ) 0

2
( )

( ) ( ) ( ) ( ) ( )

0 ( ) 2

r
T T

i

i

r
T T

i

i

k

k k x k x k u k u k

k

k

k x k x k u k u k

k



 
















 
  







 
 


  





 

4. SIMULATION RESULTS 
To illustrate the performance of the presented approach, two 

nonlinear mechanical systems are considered as numerical 

example. The first one is the inverted pendulum which is 

widely used in the literature [1,4]. The second one is two 

degrees of freedom (DOF) robot manipulator arms, in order to 

validate our method in the case of a MIMO nonlinear system 

[1]. 

4.1.Inverted pendulum  
4.1.1 System Description 
The discrete dynamic model of the inverted pendulum on a 

cart is presented as following [10]:  

1 1 2

2 2

2

1 2 1 1

2

1

( 1) ( ) ( )

( 1) ( )

sin( ( )) 0.5 ( ( )) sin(2 ( )) cos( ( )) ( )

4 / 3 cos ( ( ))

e

e

x k x k T x k

x k x k

g x k aml x k x k a x k u k
T

l aml x k




  


  


 
                                                                                        
(28) 

where: 
1/ ( )a m M 

and eT
is the sampling time. 

1( )x k
denotes the angle in radium of the pendulum from the 

vertical and 2 ( )x k
is the angular velocity in rad/s. m and ,M

which are supposed contain unknown uncertainties, are the 

mass of the pendulum and the one of the cart, respectively. 2l

is the length of the pendulum, and u is the force applied to the 

cart.  

4.1.2 Indirect Adaptive fuzzy control 
The T-S fuzzy model of the inverted pendulum is developed 

from dynamic equation of the nonlinear system, the model is 

described by the following plant rules: 

 1 1  x ( )  then  ( 1) ( ) ( ), 1...2i iiif k is M x k A x k B u k i   

The initial values of parameters of iA
and iB

are: 

1 1

1 0.01 0
,      

0.1709 1 0.0018
A B

   
    

     

2 2 3

1 0.01 0
,     

0.7685 1 0.2910
A B



   
    

     

The control gain of each local model is calculated using the 

estimated matrices, to place the closed loop poles inside the 

unit circle. The poles of each rules are fixed as: 

 1 0.7 0.0208p i 
and

 2 0.8  0.6p 
 

The rules of the PDC controller are: 

  1 1 if  x ( )  then   u( ) ( )  for  1...2i ik is M k K x k i  
 

Fig. 2-4 presents the simulation results of the evolution of the 

control signal and the state variables of the inverted 

pendulum. 

The masses are initialized at 0 2m m kg 
and the one of 

the cart 0 8 .M M kg 
At the instant 20,k  the masses 

values are changed as follow:
4m kg

and 
11 .M kg

 

 
Fig 2: Evolution of the control signal 

 

Fig 3: Evolution of 1x
and 1x̂

 (a) Evolution of the position 

error (b) 

 

Fig 4: Evolution of 2x and 2x̂  (a)Evolution of the 

position error (b) 
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Simulation results demonstrate that the proposed state space 

PDC controller guarantee the stabilization of the inverted 

pendulum to zero. The developed adaptive fuzzy control law 

is not sensible for the parameters variations.  

4.2.Two DOF robot arm 
4.2.1 System Description 
The dynamic model of the system shown in Fig. 5 is given by 

the following equation [1]: 

( ) ( , ) ( )M q q C q q q G q u    
 (29) 

 
Fig 5:  Two DOF robot arm 

Where
q

is an 2-dimensional vector of generalized coordinates 

representing joint positions, u an 2-dimensional control 

(torque) input, and
( )M q

a symmetric positive definite inertia 

matrix. The terms
( , )C q q q 

and
( )G q

account for centrifugal/ 

Coriolis forces, and gravity.  

where: 
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,  and h h hm L I
 indicate the mass, the length and the moment 

of inertia of arm i and chL
is the distance between the joint and 

the center of the arm respectively, for 1,2h  .
g

is the gravity 

constant. 1 2 and m m
 are supposed to contain unknown 

uncertainties with known upper bound. 

Let the sate vector and the input vector at the discrete time k : 
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Using the Euler approximation
( 1) ( ) ( )ex k x k T x k   

, 

with eT
is the sampling time, the dynamic system can be 

described by following discrete equations: 
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The parameters of the manipulator arms are: 1 2 1m m kg 
,

1 2 1L L m 
, 1 2 0.5c cL L m 

, 1 5I 
, 2 2I 

and
29.8 /g m s

and
0.01T se 

.The angular positions 21
,q q

are constrained within

,
2 2

  
 
  . 

4.2.2 Indirect Adaptive fuzzy control 
The basic idea is to stabilize this system around the origin 

using methods presented previously. 

the manipulator states are assumed measurable and the 

mathematical model is considered known and variable. At

30k  , the masses values are changed as follow: 

1
1.5m kg

and 2
1.5m kg

. 

two fuzzy rules are used for each state variable 1x
 and 2x

.  

The fuzzy model rules are as following: 
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The rules of the designed fuzzy controller are: 

21 1 2 if  x ( )  and ( )  

then u( ) ( )  ,  1...2

i i

i

k is M x k is M

k K x k i  
 

The feedback gains iK
are computed at each discrete time so 

that the closed loop poles are fixed inside the unit disc for all 

local models
ˆ ˆ

i i jA B K
. The poles of each rule are: 

 1 0.1 0.1 ,0.4 0.2p i i  
 

and
 2 0.0016 0.3834 , 0.0022 0.5879p i i   

 

Fuzzy rules consequence parameters are initialized to satisfy 

the system controllability condition. The adjustment 

parameter in the adaptation laws (13)-(15) is variable between 

0 and 2. 
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Figs. 6-10 present the simulation results of behavior of the 

state variables of the robot manipulator arms with parametric 

variation and its control laws respectively. 

Simulation results demonstrate that the proposed state space 

controller is able to stabilize the robot manipulator from initial 

conditions in the origin in spite of presence of mass variations. 

 
Fig 6 : Evolution of 1x and 1x̂  in rad (a)Evolution of 

position error of the first link (b) 

 

Fig 7: Evolution of 2x and 2x̂ in rad (a) Evolution of 

position error of the second link (b) 

 

Fig 8: Evolution of 
3x and

3x̂ in rad/s (a)Evolution of 

velocity error of the first link (b) 

 

Fig 9: Evolution of 4x and 4x̂ in rad/s (a)Evolution of 

velocity error of the second link (b) 

 
Fig 10: Evolution of the control signal 

5. CONCLUSIONS 
This work deals with indirect adaptive fuzzy control by state 

feedback control with PDC technique for non affine nonlinear 

systems. The control scheme is applied for the stabilization of 

variable system. At the first step, the parameters of the fuzzy 

model under an adaptation law are estimated. In the second 

step, the control law is computed basing on pole placement 

method. Satisfactory results simulations, demonstrate the 

ability of the control law, based on the adaptation algorithm, 

to stabilize the system even in the presence of parameter 

variations. Robust study can be the object of future works. 
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