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ABSTRACT
Sorting algorithms are the class of algorithms that result in
the ordered arrangement of a list of given elements. The ar-
rangement can be in ascending or descending order based on
the requirement given. Time complexity, space complexity and
optimality are used to assess the algorithms. In this paper, a
new sorting algorithm called Matrix sort is introduced. This al-
gorithm aims to sort the elements of a matrix without dis-
turbing the matrix structure. It has a time complexity of O(n√
nlog

√
n) and hence takes lesser time than existing O(n2) al-

gorithms. A pseudocode for the algorithm is provided and the
best, average and worst case time complexities are derived.
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1. INTRODUCTION
Sorting algorithms are widely used in a variety of computer
applications. These applications span a wide range of fields like
operations research, business solutions, image processing, data
mining, numerical methods, government applications and so on.
Matrix sort algorithm can be used where the elements of a matrix
need to be searched without disturbing its structure.

The two classes of sorting algorithms are internal sorting
algorithms and external sorting algorithms. An internal sorting
algorithm is one which can take place entirely within the main
memory of a system. Some common internal sort algorithms
are Bubble sort, Quick sort and Selection sort. External sorting
algorithms are those algorithms which can work on data that does
not fit entirely in the main memory. Part of the data might reside in
a slower external memory. A famous external sorting algorithm is
the merge sort algorithm.

Table-1 represents the various sorting algorithms, and their
time complexities[3]. It comprises the best case , average case and
worst case time complexities. It also specifies the memory

Table-1 Comparison of sorting algorithms
Name Best

Case
Average
Case

Worst
case

Memory Stable

Bubble
sort

n n2 n2 1 Yes

Insertion
sort

n n2 n2 1 Yes

Selection
sort

n2 n2 n2 1 No

Quicksort n logn n logn n2 logn in-place
version is
unstable

requirements.
The core operation of the matrix sort algorithm is called the

top-down operation. It compares every element in the second half
of a row with the elements in the first half of it’s previous row. This
is the novel operation that is proposed in an attempt to reduce the
time complexity.

2. RELATED WORK
Sorting algorithms have been around since the 1940s. Algorithms
which result in a permutation of the given input in which the input is
arranged in the desired order are called sorting algorithms. Several
approaches have been proposed for sorting the given input. A few
of the most prominent sorting algorithms used widely are discussed
in this section.

2.1 Bubble Sort
Bubble sort is a sorting algorithm that works by bubbling the
largest elements to the end of the list.There are several approaches
to optimize the algorithm by stopping once the list has been sorted.
For example, the algorithm can be stopped if no swaps were
performed in an iteration, but that should be implemented in a
different manner. The most common and widely used implementa-
tion of bubble sort has been presented below. The pseudocode for
bubble sort is as follows:
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procedure BubbleSort:
var j,t: integer;

begin
repeat

t:=a[1];
for j:=2 to N do

if a[j-1] > a[j] then
t:=a[j-1]; a[j-1]=a[j]; a[j]=t;

until t=a[1];
end;

2.2 Insertion Sort
Insertion sort is a simple sorting algorithm, which keeps inserting
elements in the right place. The algorithm proceeds by considering
one element at a time, inserting it in its proper place among those
that have already been considered(sorted). The pseudocode for
insertion sort is as follows:

procedure InsertionSort;
var i,j,v:integer;

begin
for i:=2 to N do

begin
v:=a[i]; j:=i;
while a[j-1]>v do

a[j]=a[j-1]; j:=j-1;
end;

a[j]:=v;
end;

end;

While considering an item, all the items larger than the
one under consideration are moved one position to the right. This
item is then placed in the vacant position.

2.3 Selection sort
Selection sort works by finding the ith smallest element in the ith

iteration, and places it in the correct position. Initially, it finds the
smallest element and swaps it with the element in the first position.
It then finds the second smallest element and swaps it with the
element in the second position and so on. The pseudocode for
selection sort is as follows:

procedure SelectionSort;
var i,j,min,t:integer;

begin
for i:=1 to N do

begin
min:=a[i]
for j:=i+1 to N do

if a[j]<min then min:=j;
end;

t:=a[i]; a[i]:=a[j]; a[j]:=t;
end;

end;

2.4 Quicksort
Quicksort is a sorting algorithm that is based on the divide and
conquer strategy. Quicksort works by dividing an array into

subarrays, and sorting these subarrays respectively. Quicksort can
be implemented using recursion. It partitions the array into two
partitions, one which has elements larger than the chosen pivot,
and the other which has elements smaller than the pivot. Then
quicksort is called for these two partitions. Quicksort is one of the
most widely used algorithms. The pseudocode for quicksort is as
follows:

procedure QuickSort(l,r:integer);
var i:integer;

begin
if l<r then
begin

pivot:=a[r] i:=l-1; j:=r;
repeat

repeat i:=i+1 until a[i]<pivot;
repeat j:=j-1 until a[j]>pivot;
t:=a[i]; a[i]=a[j]; a[j]=t;

until j<=i;
a[j]:=a[i]; a[i]:=a[r]; a[r]:=t;
QuickSort(l,i-1)
QuickSort(i+1,r)

end;
end;

There are several ways to implement quicksort. The most
common and naive approach to implement quick sort has been
discussed above.

2.5 Merge sort
Merge sort is an external sorting algorithm invented by Jon Von
Neumann. Merge sort algorithm is based on the divide and conquer
strategy. The idea behind merge sort is to split a list of elements
to be sorted into two smaller lists of the same size, and then apply
merge sort recursively on these smaller lists.This split continues
until the list contains zero or one elements. The merge operation
can be performed by stepping through the lists in linear time.
Merge sort always runs in O(n logn) time, but requires O(n)
space. Merge sort is implemented using two procedures, one
which splits the list into two halves, and the other that merges
the two lists and hence sorts them. In the given pseudocode, the
procedure mergesort(A:array) splits the list(A) and the procedure
merge(A,B:array) merges the two lists(A,B). The pseudocode for
merge sort is as follows:

procedure mergesort(A:array)
var l1,l2:array;

begin
if n==1 return A
l1=A[0]..A[n/2]
l2=A[n/2 + 1]..A[n]
l1=mergesort(l1)
l2=mergesort(l2)
return merge(l1,l2)
end;

procedure merge(A,B:integer);
var C:array;
var i,j,k:integer;



begin
i:=0; j:=0; k:=0;
while((i<nA) and (j<nB))

if(A[i] < B[j])
C[k++]:=A[i++]

else
C[k++]:=B[j++]

while(i<nA)
C[k++]:=A[i++]

while(j<nB)
C[k++]:=B[j++]

return C
end;

3. MATRIX SORT ALGORITHM
3.1 Working
The working of the matrix sort algorithm is described in this
section. The algorithm takes as input a 2D array of elements and
sorts it in the desired order. The elements are present in the desired
order once the algorithm stops.

Implementation strategy:

i. Rows of the matrix are first sorted.
ii. Then the columns of the matrix are sorted.
iii. The following "Top-down" operation is then performed ’n’
times on all the ’n’ rows of the matrix:

a) Every jth element in the first half of the current(ith) row is
compared with the (n-j)th element in the previous row.

b) If their order is opposite to the desired order, then the
elements are swapped.

c) Rows of the matrix are sorted.
The top-down operation is performed since the largest element

in a row can be smaller than the smallest element in it’s next row.
Since the elements of the first half of any row are smaller than
those in the first half of its next row (as a result of the columns
having been sorted), it is sufficient for the elements of the second
half of the ith row to be compared with the elements of the first half
of the (i+1)th row. Since an element that should be present in the
first row can be present in the last row initially, top-down operation
has to be performed ’n’ times.

3.2 Pseudocode
This section contains the pseudocode for the matrix sort algorithm.
procedure MatrixSort(N:integer,A:integer[N][N])
Input: A matrix with elements to be sorted
Output: Elements in sorted order
Algorithm to sort elements in the matrix

var i,j,flag;
begin

for i:=1 to N do
begin
RowSort(A,i); //sorts the elements in the ith row

using quicksort
end

for j:=1 to N do
begin
ColumnSort(A,j); //sorts the elements in the jth column

using quicksort

end
for k:=1 to N do

begin
flag=TopDown(A,N); //call to procedure that performs

top-down operation
if flag==1 then break;
else SortAllRows(A); //call to sort all rows in the matrix

using quicksort
end

end

The pseudocode for the top-down operation is given below.

procedure TopDown(A,N)
Input: Matrix to perform top-down operation
Output: Matrix after top-down operation
Algorithm to perform top-down operation

var i,j,flag;
begin
flag=0;
for i:=1 to N do

for j:=1 to N/2 do
begin

if A[i][j]<A[i][n-j-i] then
swap A[i][j],A[i][n-j-i];
flag=1;

end
if flag==0 then

return 1;
else

return 0;
end

The above mentioned N, in the algorithm is the square root
of the total number of elements in the input. The input is stored in
an N x N matrix, and hence contains N2 elements. While sorting
the rows, each row can be sorted using a separate processor. The
same applies for columns too. While sorting the columns, all
columns can be sorted independent of the other columns parallely.

Example for illustrating the working of matrix sort7 2 5
8 4 3
6 1 9

 2 5 7
3 4 8
1 6 9

 1 4 7
2 5 8
3 6 9


(1.a) (1.b) (1.c)1 4 2
7 5 8
3 6 9

 1 4 2
7 5 3
8 6 9

 1 2 4
3 5 7
6 8 9


(1.d) (1.e) (1.f)1 2 3
4 5 6
7 8 9

 1 2 3
4 5 6
7 8 9

 1 2 3
4 5 6
7 8 9


(1.g) (1.h) (1.i)

Fig.1 Example for illustrating the working of matrix sort
The unordered input matrix is shown in Fig.(1.a). Let’s look at

the various steps involved below.
(i) Each row of the matrix(A) is sorted. The matrix whose rows are



sorted is shown in Fig.(1.b)
(ii) Each column of the matrix is sorted. The matrix whose columns
are sorted is shown in Fig.(1.c)
(iii) The top-down operation is performed. Since A[2][1] <
A[1][3], these elements are swapped.
A[2][2] > A[1][2], and hence these elements are not disturbed. The
matrix after top-down for the second row is shown in Fig.(1.d)
(iv) In similar manner, top-down operation is performed for the
third row. The matrix after top-down operation for the thid row is
shown in Fig.(1.e)
(v) The top-down operation has completed one iteration, and hence
the rows have to be sorted. The matrix whose rows are sorted after
top-down operation is shown in Fig.(1.f)
(vi) Since swaps were performed in the previous top-down, the
algorithm does not stop. The matrix after the next top-down
iteration is shown in Fig.(1.g)
(vii) The matrix whose rows are sorted after the second top-down
is shown in Fig.(1.h)

Since no swaps are performed now, the result has been
obtained. The resultant matrix which is completely sorted(in the
desired increasing order) is shown in Fig.(1.i)

Hence, the matrix has been sorted by the matrix-sort algorithm.
If the sorted matrix has to be stored in a 1-D array, the elements
can be unrolled one by one from the first row to the last row into a
1-D array. This list is a sorted permutation of the given input.

4. ANALYSIS OF MATRIX SORT
In this section, a detailed analysis of the time complexity of
matrix sort is presented. For this analysis, a naive sequential
implementation is considered, since the performance on a parallel
processor will depend on the processor’s specification.

Consider the input size to be n elements. For convenience, it is
assumed that n is a perfect square, failing which the matrix can
be padded with multiple copies of an extra element to make it a
perfect square. Since the total number of elements is n, the size of
the matrix is

√
n x

√
n.

It is well known that the average case time complexity of
Quicksort is nlog n. Each row in the input matrix consists of

√
n

elements. Hence, the rows can be sorted in
√
n log

√
n iterations.

Each of the columns also take
√
n log

√
n iterations.

Hence, for row and column sorts,

T1(n) =
√
n * (

√
n log

√
n) +

√
n * (

√
n log

√
n)

= 2nlog
√
n ... (1)

The above expression is the time taken for sorting the rows and
columns initially. Once this is done the top-down operations are
performed.

While performing the top-down operation for the ith row, the
first half of this row is compared with the second half of the (i-1)th

row (previous row). Hence,
√
n/2 comparisons (half the number of

elements in the row) are performed. Since this is repeated
√
n times,

the number of comparisons is,
√
n *

√
n/2 = n/2 comparisons. This

operation has to be performed for
√
n rows. Hence, the number of

comparisons becomes n
√
n/2.

This results in the following expression,

T2(n) = 2nlog
√
n + n

√
n/2 ... (2)

Each call to top-down is followed by a sort of all rows.
Hence, this adds n log

√
n for each call to top-down. Hence, for

√
n

calls, the time complexity is n
√
nlog

√
n.

Hence, the final expression for the time complexity is as follows:

T(n)= 2nlog
√
n + n

√
n/2 + n

√
nlog

√
n ... (3)

Hence, Eqn.(3) is the expression for the time complexity
of matrix sort. In Big-oh notation, the time complexity for the
matrix sort algorithm is,

T(n) = O(n
√
nlog

√
n) ... (4)

Hence, this algorithm is proven to be better than other
sorting algorithms that have a quadratic time complexity, i.e,
O(n2). Thus, an expression for the time complexity of matrix sort
is arrived at.

5. RESULTS
For any sorting algorithm, the results convey how useful it is for
real world applications. In this section the every case analysis of
matrix sort has been discussed. A comparison of the running time
of matrix sort with other sorting algorithms has also been presented.

5.1 Every case analysis
This section presents the every case analysis of matrix sort, i.e, the
best case, average case and worst case time complexity[10] for the
matrix sort algorithm. Each of these relations are derived one by
one.

Best case

The best case input is a matrix of elements which is sorted.
Consider an input of n elements. For this input, all the rows of the
matrix are sorted, then all the columns are sorted. Since there are
no disorders, there are no swap operations and hence the algorithm
concludes that the matrix has been sorted, and stops.

For sorting
√
n rows, the time complexity is

√
n * (

√
n log

√
n).

Sorting
√
n columns also has the same time complexity. The

top-down operation performs n/2 comparisons, and then the
algorithm stops. Hence, the best case time complexity is,

Tbest(n)=
√
n * (

√
nlog

√
n) +

√
n * (

√
n log

√
n) + n/2 ...(5)

= 2nlog
√
n + n/2 ...(6)

Hence, Tbest(n)=O(nlog
√
n) ...(7)

Average case

The average case input is the most common type of input.
It can be any randomly ordered collection of elements stored in
the matrix. The average case time complexity for matrix sort has
already been derived in the analysis section of this paper. The
average case complexity of the algorithm is,

Taverage(n)=O(n
√
nlog

√
n)

Worst case

The worst case input for this algorithm is when elements
are sorted along the columns. Consider such an input matrix with n
elements organized in

√
n rows and

√
n columns. For such an input,

the top-down operation ends only in the
√
nth iteration, for an input

matrix with n elements.
The worst case time complexity for quicksort is n2, for n



elements. Hence, for one row or one column, the time complexity
is n (since the number of elements in a row or a column is

√
n).

Hence, T3(n)=
√
n * n +

√
n * n =2n

√
n (For

√
n rows and√

n columns) ...(8)

The above expression is only for the row and column sorts.
The top-down operation is performed

√
n times. Each top-down

operation performs n/2 comparisons, and a sort of all rows. Sorting
all rows

√
n times takes,

T4(n)=
√
n *

√
n * n (Since

√
n rows are sorted

√
n times,

and the time complexity to sort a row with
√
n elements is n) ...(9)

The final expression for the top-down operation alone is,
T5(n)=n2 + n

√
n /2 ... (10)

Hence, the worst case time complexity is,
Tworst(n)=T3(n) + T5(n) ... (11)

The worst case time complexity of matrix sort is hence,
Tworst(n)= 2n

√
n + n2 + n

√
n /2 ... (12)

Thus, Tworst(n)=O(n2) ... (13)

5.2 Comparison with existing algorithms
The following compares the running time of matrix sort algorithm
with that of other sorting algorithms. The input was generated
by a random number generator. The generated inputs have a size
which is a perfect square. Zero padding can be done if the input
is not a perfect square. The running time has been measured in
microseconds.

Table-2 - Comparison of the running time of matrix sort
with that of other sorting algorithms

Input size Matrix sort Bubble sort Selection sort Quicksort
100 153 105 72 29
400 818 622 708 140
900 1843 5731 3337 344
1600 3746 10719 8431 583
2500 8405 14552 14854 966
3600 20597 30677 20308 1477
4900 27058 45202 31317 1971
6400 45720 81933 46224 2735
8100 69753 127858 72779 1892
10000 102996 197263 104105 1968
10000 6120 155281 103515 144889

Fig.2 shows how the running time of various sorting algo-
rithms varies with the input size. Fig.3 highlights the running time
of the discussed sorting algorithms on a special case input, in
which there is only one unique element.

From the obtained results, one can see that there are three
classes of performance for matrix sort relative to other sorting
algorithms. These three classes of performance are discussed here.

Class-1 From the first two rows of Table-2 i.e, for small
sized inputs, the existing algorithms perform better than matrix
sort. Also from Fig.2, it is evident that other algorithms perform
better when the input is small sized. Hence, matrix sort is more

Fig.2 Comparison with existing algorithms

Fig.3 Special case running time(Class-3)

suitable for large-sized inputs. Sorting operations are generally
performed on large sized inputs. Also, the time difference for small
sized inputs is negligible, since it is of the order of microseconds.

Class-2 From the remaining rows and the middle region of
Fig.2, it is clear that the matrix sort algorithm performs immensely
better than other algorithms with a quadratic time complexity.
Hence, extending this inference, a conclusion that matrix sort will
perform incomparably better than algorithms of quadratic time
complexity can be made, when the input is large sized. Since

√
n

is much larger than log
√
n, the matrix sort algorithm which

has a time complexity of O(n
√
nlog

√
n) performs better than

algorithms with a time complexity of O(n2).

Class-3 (Special case) One of the worst case inputs for
quicksort is when the input consists of only one unique element,
for example, a list of ten 1’s. Matrix sort algorithm beats Quicksort,
which is considered to be one of the best sorting algorithms for
this type of an input. This is evident from the last row of Table 2
for which the input was a matrix consisting of 10000 copies of
the same element. In Fig.3, the running time of different sorting
algorithms(including matrix sort) on this input has been presented.
It is clear from Fig.3 that matrix sort takes the least time for
running on this input compared to the other sorting algorithms
considered. This shows that matrix sort will speed up sorting when
there are very few unique elements in the given input.



6. CONCLUSION AND DISCUSSION
Hence, in this paper the working and results obtained for matrix
sort algorithm have been discussed. Derivations for its best case,
average case and worst case time complexities are presented. The
matrix sort can be used in a plethora of applications spanning a
multitude of fields. One major reason for it’s application domain
being huge is that this algorithm can be implemented parallely,
which reduces the running time phenomenally. Since a wide range
of applications demand parallel processing, this algorithm is highly
suitable for a wide range of today’s applciations, and those that are
yet to be created. The simplicity of matrix sort algorithm is one of
it’s advantages. Several applications store data in two-dimensional
data structures. Since the amount of data is too high, conversion
of data structures is indeed a bottleneck for performance. Since the
matrix sort algorithm uses a matrix as it’s primary data structure,
matrix sort is highly suitable for such applications. Thus, this is a
very efficient algorithm that can dramatically reduce the time taken
for one of the most important tasks accomplished by computers,
sorting.

Sorting algorithms have applicability in many commercial and
scientific applications in a wide variety of fields. Increasingly, most
of these applications are being run on multi-processor systems and
hence the parallelisation capabilities of algorithms have become
important. Matrix sort uses a novel approach to sorting, where
rows/columns are sorted independent of each other. Thus, there is
great potential for parallelisation with a huge reduction in running
times on multi-processor systems. The future scope of matrix sort
includes the implementation of matrix sort in a completely parallel
environment.
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