International Journal of Computer Applications (0975 - 8887)
Volume 144 - No.1, June 2016

Enhanced Resource Reservation Technique for
Reduced Call Blocking in Femtocell Networks

Amit Kumar Vishwakarma, Akhilesh Jain, Swapnil Jain
NRI Institute of Information Science & Technology
Dept. of Electronics and Communication
Bhopal, Madhya Pradesh, India

ABSTRACT

Femtocell has proved to be a promising technology to enhance in-
door coverage and network throughput. Dense deployment of fem-
tocells facilitates efficient offloading of data traffic from the macro-
cell network to the femtocell network. However, this dense deploy-
ment may result in serious inter-femtocell interference. Consider-
ing limited coverage radius of the femtocell, frequent handovers is
another challenge which may result in excessive call dropping. In
order to improve QoS of mobiles users in terms of call blocking
ratio, we suggest a predictive resource reservation technique. Our
proposed technique first calculates the probability distribution of
UEs’ locations in order to optimally deploy femtocells using Ac-
tive LeZi Algorithm. Then, we use regression-based prediction al-
gorithm (Box-Jenkins Model) to forecast the inter-call arrival and
call duration distribution. Finally, we reserve the resources for users
in multiple femtocells as to reduce the chances of call dropping.
Our proposed technique has shown significantly improve the per-
formance of the network in terms of call blocking, system through-
put, and energy efficiency.
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1. INTRODUCTION

Future wireless networks require ubiquitous connectivity with
high data rates to improve the quality of service (QoS) of mo-
bile users. To handle exponential increasing demands for high bi-
trate and ubiquitous connectivity, mobile operators are looking for
dense deployment of miniature cellular base stations inside users’
homes/offices. Deployments of such low-cost, low-powered cellu-
lar base stations at close proximity to mobile users not only im-
prove network throughput, coverage, and reliability but also en-
hance the life of battery-operated mobile devices. These small base
stations are more commonly known as Femtocell or Femto Access
Points (FAPs) or simply Femtocells.

Dense deployment of FAPs allows efficient reuse of available wire-
less spectrum. This leads to improvement in the system capacity
manifold without increasing additional deployment and mainte-
nance costs to the cellular operators. Additionally, it also helps in
solving indoor coverage problem as indoor users are severely af-
fected by wall penetration losses. The unique benefit of femtocell

technology is that users require no new equipment. Any existing
mobile user can connect to and get serviced by FAPs. Additionally,
the deployment and maintenance costs of the femtocell are very
low which make it feasible for both home users and cellular oper-
ators. Indeed, a well-designed femtocell/macrocell-integrated net-
work can divert huge amounts of traffic from congested and expen-
sive macro-cellular networks to femto-cellular networks. From the
wireless operator point of view, the ability to offload a large amount
of traffic from macro-cellular networks to femtocells is the most
important advantage of the femtocell/macrocell-integrated network
architecture [1]. This will not only reduce the investment capital,
maintenance expenses, and operational costs but will also improve
the reliability and energy efficiency of the cellular networks [2].

It is observed that the count of femtocell deployment all over the
world already exceeded the total macrocell count. The count is ex-
pected to further increase in future as operators are now looking
for cost effective coverage extension in rural and remote femtocell
deployments. This will result in increased co-tier interference to
neighboring femtocell users. Additionally, with high data demands
from indoor users, it might not be possible for femtocells to always
serve incoming mobile users’ request. In order to avoid this, prior
resource reservation is suggested in the literature. Authors in [3]]
have suggested radio resource reservation at the future locations
based on users’ mobile trajectory. Authors in [4] proposed a fair
scheduling algorithm combined with reservation resource for sup-
porting differentiate application-level services. A unique resource
management scheme that contains bandwidth adaptation policy and
dynamic bandwidth reservation policy is proposed in [S].

Our work focuses on using Box-Jenkins algorithm to perform
forecast of inter-call arrival and call duration. Box- Jenkins algo-
rithm has already been used for electricity load and price fore-
casting [6,7]]. Additionally, ARIMA models based on Box-Jenkins
methodology for capturing the self-similar internet traffic is done in
[8]. Authors in [9] proposed a model-based bandwidth prediction
scheme for variable-bit-rate (VBR) video traffic with regular group
of pictures (GOP) pattern. Multiplicative ARIMA (autoregressive
integrated moving-average) is used as a base stochastic model for
prediction and model validity check.

In this paper, we use statistics based approach to calculate the prob-
ability of occurrence of mobile users in home/office environment.
Based on this probability distribution, we optimally deploy femto-
cells inside rooms whilst considering penetration ratio; which is the
fraction of rooms in which femtocell are deployed. Then, we learn
the mobile users mobility model and perform femtocell detection as



to find out the possible candidate femtocells that a mobile user can
move to. Finally, resource reservation in done in those candidate
femtocells for a finite duration as to reduce mobile users’ blocking
during handovers.

The rest of the paper is organized as follows. Section [2] explains
the model of femtocell network along with 2D apartment struc-
ture, user mobility model, and cell selection scheme. Additionally,
channel model, energy consumption, and energy efficiency param-
eters are also discussed. In section [3] we formulated our problem
and presents our proposed resource reservation technique based on
ARIMA model. Section ] presents the simulation scenario and ob-
tained results. Finally, we conclude our work in section[5]

2. SYSTEM MODEL

Our system model consists of a group of Femtocell or Femto Ac-
cess Points (FAPs) deployed in the simulation region. User Equip-
ments (UEs) are deployed in such a way that each UE can connect
to at least one FAP. FAPs are assumed to be in “open Access” mode
and can serve any UEs in their vicinity. Only downlink data trans-
mission is investigated in our analysis. Total available bandwidth
is divided into NN subchannels each WV hertz wide. We consider
OFDMA and Rayleigh flat fading to render all subchannels identi-
cally over long run [[10]. A total of U UEs are uniformly deployed
inside rooms while FAPs are placed at the center of the room. The
count of total deployed FAPs depends upon the penetration ra-
tio (P,). Additionally, placement locations for FAPs are calculated
based on the cumulative probability distribution of UEs in different
rooms; which is explained in Subsection [2.2} Inter-call arrival and
call duration of UEs follow an exponential distribution.

2.1 Apartment Structure Model

we consider a single floor apartment with R rectangular rooms of
different sizes as shown in Figure[T} UEs can move within the apart-
ment, one room at a time according to Modified Random Way-
point Mobility Model explained in next subsection. The connec-
tivity among various rooms is represented using a graph G where
vertices represent the rooms and existence of an edge represents the
connectivity between a pair of rooms. For example, Figure [T] rep-
resents a 5 room apartment on the left and respective connectivity
between rooms using a graph on the right.
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Fig. 1. Apartment Structure

2.2 UE Mobility Model

The UE mobility model considered for our analysis is Random
Waypoint Mobility Model with a few modifications. UEs can move
randomly and freely within the apartment with a restriction that
UEs can move from one room to another only if they are connected.
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However, the destination, speed , and direction are all chosen ran-
domly and independently of other UEs. The movement of UEs is
governed in the following manner: Each UE selects a random desti-
nation room in the simulation area based on the connectivity graph
G and a random speed between O and S, .. Once, UE moves to
this destination, it pauses for a fixed time period before selecting
another random location and speed for movement. This behavior is
repeated for the entire simulation period.

2.3 Cell Selection Scheme: Max RSRP

RSRP is defined as the linear average of the downlink reference
signals (RS) across the entire channel bandwidth. This scheme
considers Reference Signal Received Power (RSRP) based asso-
ciation for UEs. At the time of cell selection, UEs get associated
with the base station (BS) providing highest RSRP. So, the i" UE
will select the k" BS as its serving BS ¢ if,

CellID; = argymaxz(RSRPy)

Knowledge of absolute RSRP provides the UE with essential
information about the signal strength of cells from which path
loss can be calculated. It is one of the fundamental UE downlink
physical layer measurements, and is mostly utilized during the
decision making in handovers.

2.4 Channel Model and Variable Bit-rate
Transmission

Let P, s represents the instantaneous subchannel transmit power

of FAP f. Considering Reuse 1 scheme among all FAPs, the av-

erage downlink (DL) SINR of UE i when connected to FAP f is
given by,

Ptx,szf

Tif=— M
S P HL4+WN,
I=1,1#f

where G (H) is the effective signal (interference) gain to UE ¢
from FAP j. Ny is the noise spectral density.

Based on this DL SINR, the average bitrate obtained by UE ¢ from
FAP f is calculated by Shannon Hartley theorem as [L1]],

By =N;sxW=xloga(1+T; ) bits/s )

where N; ; is the number of subchannels allocated to user % from
FAP f. Here, we consider that a UE can associate with only one
FAP at any point of time. Hence, the following constraint is en-
forced for each FAP f € F,

U
S ONip<N 3)
=1

2.5 Energy Consumption and Energy Efficiency

Energy consumption of FAPs is taken to be load dependent with
some fixed ‘“Zero Load” consumption. The total energy consump-
tion of a FAP can be calculated using the following equation [12],

T7Vl

Erap=Eo+ ( + PSP) 4
SPA

where Ej is fixed “Zero Load” power. spa, and Pgp represent

power amplifier efficiency and signal processing overhead, respec-

tively. Here 7}, is total input power to transmitting antenna ob-



tained by summing up transmit power (P, ) of all the subchan-
nels in use. For each FAP, this P, ; can take value between (P,
and Py, q4)-

To evaluate energy efficiency, we compute the ratio of total con-
sumed power to total system throughput. This ratio is called En-
ergy Consumption Rating (ECR), and denotes energy consumption
normalized to throughput (Watts/Mbps) [13].

Energy Consumption

ECR = 5)

Effective System throughput

Hence, lower the value of ECR, more energy efficient the system
is.

3. PROBLEM FORMULATION & SOLUTION
DESCRIPTION

Our problem focuses on improving QoS of UEs in terms of call
blocking probability. Since coverage radius of FAP is small, UEs
may move out of its connected FAP during a call. Hence, an effi-
cient handover mechanism is necessary to continue the UE’s call.
Following are the objective of our work:

—Statistical and Markov model based UE location analysis for op-
timal placement of FAPs inside apartment rooms considering
penetration ratio.

—Statistics based FAP detection inside various rooms.

—Learning based UEs’ inter-call arrival and call duration estima-
tion.

—Efficient resource reservation for UEs in neighboring femtocell
to avoid call blocking during handovers.

—Analysing system throughput and energy efficiency aspects of
suggested resource reservation technique.

3.1 UE Location Statistics and Optimal FAP
Placement

Dense deployment of FAPs helps in improving the throughput of
a cellular network by efficient reuse of wireless spectrum. How-
ever, it may result in high co-channel interference. Hence, FAPs
count and deployment locations should be controlled in order to
maximize coverage while minimizing interference and costs. We
consider an adaptive probability-based strategy to first analyze UEs
location during entire simulation. For this, we maintain a 2D matrix
U of size U x R which contains the count of each UE occurrences
in all the rooms (Fig. 4). Hence, whenever UE 7 moves to room
7, it increments the value of U[i][j]. Now, for optimal FAPs de-
ployment, we present ActiveLeZi prediction algorithm [12]. This
algorithm is based on the LZ78 data compression algorithm, which
incrementally gathers the information and delivers the real-time on-
line predictions. For this, we closely follow the approach of authors
discussed in [14]. An input sequence is provided and as the number
of states in that input sequence grows, the loss of information across
the phase boundaries also increases rapidly. For this, we suggest a
solution that maintains a variable length window of previously seen
symbols. The length of the window at each stage is taken equal to
the length of the longest phrase encountered. Within this window,
statistics on all possible contexts is gathered. This helps in build-
ing a better approximation to the order-k Markov model because
it has captured information about contexts in the input sequence
that cross phrase boundaries in the classical LZ78 parsing. Hence,
it results in a better convergence rate to optimality predictability
and a greater predictive accuracy. Figure 3 illustrates the algorithm
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initialize dictionary = null
initialize phrase w = null
initialize window = null
initialize Max_LZ_length =0

loop
wait for next symbol v
if ((w.v) in dictionary):
W= WV
else
add (w.v) to dictionary
update Max_LZ_length if necessary
w o= null
endif
add v to window
if (length(window) > Max_LZ length)
delete window[0]
endif
Update frequencies of all possible
contexts within window that includes v
forever

Fig. 2. Active Lezi algorithm.

represents the pseudocode of Active LeZi algorithm with consider-
able details. Figure 4 represents the trie formed by the Active LeZi
parsing of the input sequence “aaababbbbbaabccddcbaaaa”.

We calculate the probability of each state occurring in the sequence
and predict the one with the highest probability as the most likely
next action. This is done by predicting the next event of the se-
quence for which ALZ has built a model. Then, we use data com-
pression and Prediction by Partial Match (PPM) family of predic-
tors symbol. In our example, the last phrase aaa (which is also the
current ALZ window) is used.

Within this phrase, the contexts that can be used are all suffixes
within the phrase, except the window itself (i.e. aa, a, and the null

29,99

context). Suppose the probability that the next symbol is an “a
is being computed. From Figure 4 we see that an ~a” occurs two
out of the five times that the context aa appears, the other cases
producing two null outcomes and one b. Therefore, the probability
of encountering an “a” at the context aa is 2/5, and we now fall
back to the order-1 context (i.e. the next lower order model) with
probability 2/5. At the order-1 context, we see an "a” five out of the
ten times that we see the ”a” context, and of the remaining cases, we
see two null outcomes. Therefore, we predict the ”a” at the order-1
context with probability 5/10 and escape to the order-0 model with
probability 2/10. At the order 0 model, we see that 10 out of 23
symbols seen so far, and we, therefore, predict a with probability

10/23 at the null context. The blended probability of seeing an ”a
as the next symbol is, therefore:

2 2(5 2 (10

This method of assigning probabilities has the following advan-
tages:

—1It solves the zero-frequency problem.In the above example, if
only the longest context had been chosen to make a decision on
probability, it would have returned a zero probability for the sym-
bol ”c”, lower-order models show that this probability is indeed
non-zero.

—This blending strategy assigns greater weight to higher-order
models in calculating probability if the symbol being considered



Fig. 3. Trie formed by the ALZ parsing of the string “aaababbbbbaabccd-
dcbaaaa”

is found in that context while lower-order models are suppressed
owing to the null context escape probability.

Fig. 4. Matrix U for UEs location

Based on this Lezi Update algorithm (with order-2 Markov Model),
cumulative probability of UEs occurrence in each room is calcu-
lated and stored in a one-dimensional array (Say CU| ]) of size R.
It incorporates the probability of going to a particular room in next
time slot conditioned on current location of the UE. The 4, entry
of CU array represents the probability of finding any UE in room
1. Finally, we start with deploying FAP at the room having with
highest cumulative probability. Successively, deployment of FAPs
is done until FAP count become equal to R * P,..

3.2 Adaptive Learning Based FAP detection

Once FAPs are deployed, we need to analyze the statistics of FAP
signal received at each room. For this, we maintain a 2D matrix
(Say RoomF AP), where RoomF AP][i][j] entry represents the
number of times FAP j’s signal is detected inside room ¢. When-
ever a UE moves to room ¢, it tries to detect the signals from all
FAPs in that room. If received signal from FAP j is greater than the
threshold than the value of RoomF AP[i][j] is incremented. This
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matrix is later used to calculate the probability of detecting differ-
ent FAPs inside each room and for optimal resource reservation
technique (Fig. [3).

3.3 Expectation of UE call Arrival and Duration

In dense femtocell network, reservation of resources helps in re-
ducing UE call blocking, specially during inter-femtocell handover.
For this, we suggest a prediction based resource reservation tech-
nique. This technique is based on Regression Model With ARIMA
Time Series Errors which is often used for forecasting values based
on historical data. This model explains the behavior of a model
with predictor data, though the errors have autocorrelation indica-
tive of an ARIMA process. The specific ARIMA model that is used
is Box-Jenkins Model.

The Box-Jenkins methodology is a five-step process for identify-
ing, selecting, and assessing conditional mean models (for discrete,
univariate time series data). It involves following steps:

—Establishing the stationarity of given time series. If the series is
not stationary, successive differencing of series is done to attain
stationarity.

—When the model is stationary, we select a conditional mean
model for our data. In our case, we have selected ARIMA model.
It suggests differencing the non-stationary series one more time
to achieve stationarity. Thus, ARIMA model combines both
Auto-Regressive (AR) and Moving-Average (MA) models that
were previously used, hence, it proves to be a better forecasting
model.

—Specify the model and estimate the model parameters.

—Conduct goodness-of-fit checks to ensure the model describes
your data adequately and check if the residuals are uncorrelated.

—PForecasting the future data.

We use ARIMA model to predict inter-call arrival and call duration.
For this, we input history of last K inter-call arrival (or call dura-
tion) values to the model. After execution, model forecasts next
expected inter-call arrival (or call duration). Finally, we use this
forecasted inter-call arrival and call duration values for resource
reservation in FAPs. Figure [6] explains the sequence of steps in-
volved for forecasting a value using ARIMA model when a series

RoomFAPRXF
FAP 1 FAP 2 sssssssssnnnnnnnnnnn FAPF
Room 1
Room 2 /

/

Room R /

v

No. of times FAP 2 signal detected in Room 2

Fig. 5. Matrix U/ and array C'U for UEs location
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Fig. 6. Box-Jenkins Methodology

of values are given as input.

3.4 Femtocell Resource Reservation

Once we forecast the next inter-call arrival and call duration using
ARIMA model, we need to reserve the resources at FAPs for fu-
ture handovers. For each UE, we have to find the candidate FAPs
for resource reservation. For this, we make use of two matrices U/
and RoomF AP as mentioned in previous subsections. When UE &
wants to reserve resources, it finds out a total of F candidate FAPs
where UE is most probable to move. Candidate FAPs for UE ¢ se-
lected based on the product of probability of UE ¢ in a room j and
probability of finding an FAP k in that room j as follows;

Candidate FAP;[F] = mamk{z U[i][j] * RoomF AP[j]k]}

j=1

(7)

where CandidateF' AP; is the set of candidate FAPs where UE
i will reserve resource for future handover. Let CallA; and
CallD; be the inter-call arrival and call duration forecast cal-
culated through ARIMA model. Then, UE ¢ will reserve the re-
sources needed for next C'allA; + CallD; time slots in each FAP
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€ CandidateF AP;. After this time duration, reservation for UE
is cleared as to free up the resources for call arrivals from other
UEs.

4. SIMULATION RESULTS

Our simulation model consists of a set of UEs distributed uniformly
in the simulation region. FAPs are deployed at the center of the
rooms, based on the given penetration ratio. Discrete event simula-
tions are done where UEs call arrival and duration follows an expo-
nential distribution with mean 600 and 180 seconds, respectively.
All values are obtained for 95% confidence interval averaged over
100 iterations. The rest of the simulation parameters are summa-
rized in Table 1.

Parameter Value
Bandwidth 5 MHz
Number of Subchannels 256
FAP Energy Consumption 10 watt
FAP Penetration Ratio {0.5-1.0}
UE Count {10-50}
FAP Transmit Power (P, q4) 23 dBm
Gaussian Noise Figure -174 dBm/Hz
Zero-Load FAP Power Consumption (Eq) 5 Watts
Path Loss Coefficient 35

To analyse the performance of our resource reservation technique,
we calculate system throughput, energy efficiency and call block-
ing ratio for varying UE and FAP count. Figure [/| shows the ef-
fect of increasing UE count on overall system throughput. As can
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be seen that with an increase in UE count, more UE will be re-
questing for resources. Since FAPs are mostly underutilized, it can
serve increased number of UEs thereby improving overall system
throughput. However, with high UE count, we also see some de-
crease in system throughput. Figure[8]shows the effect of increasing
UE count on ECR of the system. Since FAP count and their energy
consumption remain constant, reduction in ECR is observed due to
increase in system throughput. Talking about system blocking ratio
(Fig.[9), we have seen an increase blocked users. This is due to the
fact that higher successful reservation count implies a higher num-
ber of UEs making resource reservation requests at FAPs. This, in
turn, reduces the resources available for other UEs thereby increas-
ing the number of blocked requests too. Figure[T0]shows the effect
of increasing FAP penetration ratio on overall system throughput.
As FAP penetration ratio increases, a number of rooms with FAP
deployment also increases. With increase in FAP count, UE can de-
tect more FAPs and hence reserve resources to them. This addition-
ally reduces transmitter-receiver distance thereby improving SINR
and bitrate. Figure shows the effect of increasing FAP count
on ECR of the system. With an increase in FAP count, system en-
ergy consumption also increases. However, a manifold increase in
system throughput compensates for the higher energy consumption
thereby reducing the ECR. Additionally, in Figure[12] we see a de-
crease in system blocking ratio with an increase in FAP penetration
ratio because now more FAPs are available to serve users thereby
reducing system blocking.
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5. CONCLUSION

In this paper, we have suggested an enhanced resource reservation
technique for femtocell network with an aim to improve call block-
ing probability. On one hand, our suggested technique shows sig-
nificant improvement in system throughput and energy efficiency,
however, on the other hand, we have seen an increase in call block-
ing too. The mobile users who are able to successfully reserve re-
sources in femtocells are able to maintain their connection during
handover. However, reservation of resources on multiple femtocells
results in availability of lower number of resources for other users.
This consequently results in an increase in blocked connection re-
quests for all possible femtocell and mobile user distributions. Our
suggested technique occasionally shows quite an improvement in
system blocking, however, it may not be optimal for all possible
user deployments and mobility scenarios.
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