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ABSTRACT 
The problem of finding Minimum Vertex Cover for graph 

belongs to the class of NP Complete and plays a key role in 

Computer Science Theory. The problems which belong to NP 

Complete set are not solvable in polynomial time in any 

known way. Since finding Minimum Vertex Cover (MVC) for 

a graph belongs to NP Complete class; so we are dubious to 

solve it in any polynomial time algorithm. Such problems are 

solved by algorithms which promise to give near optimum 

solution.  

In this paper we have analyzed and scrutinized such 

algorithms like greedy algorithm, approximation algorithm, 

simple genetic algorithm (GA), primal-dual based algorithm 

(PDB), Alom‘s algorithm etc. on random directed and 

undirected graphs and found that all the algorithms give near 

optimum solution with a negligible performance difference. It 

was also observed that out of all the above said algorithms 

Alom‘s Algorithm is more effective in finding MVC for 

undirected graphs and for weighted graphs, superior 

performance is attained by primal-dual based approach. 

Further the algorithm was implemented using JAVA and 

output demonstrates the various possible combinations of 

Minimum Vertex Cover. 

Keywords 
Vertex Cover, Approximation, Branch and Bound, Greedy, 

Alom‘s, Primal Dual, Genetic. 

1. INTRODUCTION 
The VC interrogation is a NP-complete interrogation [1]. A 

interrogation is NP-complete if we cannot find its polynomial-

time principle procedure for resolving it to the accurate point. 

However, this does not mean this is all. We have 2 approaches 

for resolving NP-complete interrogations .Firstly if the real 

inputs are small, the principle procedure with no. raised to an 

exponent running time could be perfectly satisfactory. In 

another approach, it could be easy to find in time a ―near 

optimum resolutions‖. In general, the near optimality or 

Approx is generally good enough. A principle procedure 

giving ―near-optimum‖ resolution is known as Approx 

principle procedure. 

In the subject of computer education, the ―VC interrogation” 

or ―node cover interrogation” is one of the 21 Karp NP-

complete interrogations.  

MIN VC problem (MVCP)[2] has attracted many researchers  

and practitioners  due to two reasons. First one is for its NP-

completeness and secondly, it can be helpful for resolving 

many tough real-life difficulties that can be formulated as 

instances of this problem but we have only few researches 

existing that analyze the performance and output of 

metamorphosis methods and principle procedures. 

Now let us elaborate what exactly does this MIN vertex cover 

problem(MVCP)[2] means. 

Explanation: Given a one dimension representation G= (V, 

E) where V and E are respectively vertex and edges. A vertex 

cover (VC) of a provided undirected one dimension 

representation is a subset V‘⊆V such that if (v, u) is an edge 

of G(the one dimension representation provided), then either v 

belongs to V‘ or u belongs to V‘ or both. 

So, the cumulative size of the VC is the cumulative no. of 

vertices present. The VC problem (VCP) is ―To find MIN 

sized VC in an undirected one dimension representation‖. 

Such type of VC is known as an OVC (optimum VC). Few 

books describe an efficient Approx principle procedure with 

O(E) time for VC problem(VCP) . 

We have 2 versions of the MIN VC (MVC): First is the 

decision version and second is optimization. In the decision 

version, we have to verify if there exists a vertex cover (VC) 

of a provided size for a one dimension representation. On the 

other side, in the optimization version of interrogation, we 

find a VC of MIN size. 

MVC is amongst the Karp‘s21 [3] diverse combinational and 

one dimension representation theory interrogations, which are 

NP-complete. MVC is an important case of the ―groups cover 

interrogations‖ which take inputs as an arbitrary gathering of 

sub covers S = (S1, S2, .., Sn) of the universal groups U, and 

the purpose is to find the smallest subset of sub covers from S 

whose union is U. The MVC interrogation is also related to 

other complex one dimension representation interrogations 

and so it attracts the researchers towards this field of 

designing, most effective and Approx principle procedures. 

The physicists recently were driven towards the study of NP-

complete interrogations like VC. The reason for this is, when 

studied on suitable random ensembles, the interrogation 

shows phase transitions in the solvability which often 

coincides with the peaks in the typical computation 

complexity or changes of the typical complexity from no. 

raised to an exponent to polynomial.  

2. PROBLEM STATEMENT 
We are given a random undirected Graph G=(V,E) and we 

have to find a minimum set of vertices V‘ such that all the 

edges are incident to at least one vertex form the vertex set V‘. 

The minimum vertex cover problem is the optimization 

problem of finding a smallest vertex cover in a given graph. 

INSTANCE: Graph G 

OUTPUT: Smallest number k such that G has a vertex cover of 

size k. 

http://en.wikipedia.org/wiki/Optimization_problem
http://en.wikipedia.org/wiki/Optimization_problem
http://en.wikipedia.org/wiki/Optimization_problem
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If the problem is stated as a decision problem, it is called 

the vertex cover problem: 

INSTANCE: Graph  G and positive integer k. 

QUESTION: Does G have a vertex cover of size at most k? 

The vertex cover problem is an NP-complete problem: it was 

one of Karp's 21 NP-complete problems. It is often used 

in computational complexity theory as a starting point for NP-

hardness proofs. 

3. RELATED WORK 
Various researchers have proposed various methods to solve 

NP Complete Vertex Cover Problem. Delbot and C. 

Laforest[5] had proposed an effective algorithm in which they 

scanned all vertices of a graph from left to right depending 

upon one condition , which was―u is added to vertex cover if 

and only if it has at least one neighbor not in the cover‖.This 

algorithm is called as LIST LEFT [5]which is given as 

follows: 

Labeled graph L(G) = (L(V), E) 

1. A ← Ø 

2. For each vertex, v є L(V) do 

3. If v has at least one right neighbor, then 

4. 4.A  ←A  U {v} 

5. Return A  

Another technique to deal with this problem is SORTED-

LL[7], which is also denoted by SLL, is an extension of 

LISTLEFT and has been described in the article of D. Avis 

and T. Imamura. It solves the problem as―if there is at least 

one v є N(u )with lower degree, select u; otherwise, if u has 

only neighbor with higher degree, u is not selected.‖ 

Eric Angel , Romain Campigotto and Christian Laforest [6] 

suggested the algorithm ANTI SORTED-LL, works like 

SORTED-LL on sorted lists, but it reads the lists from the end 

to the beginning. Algo is as follows: 

Labeled graph L(G) = (L(V), E) 

1. A ← Ø 

2. For each vertex, v є  L(V) do   

3. If u has at least one right neighbor with a larger degree or a 

left neighbor with the same degree, then 

4.A ←A U {v}  

5. Return A 

 

Apart from this various other authors and researchers have 

used and proposed various methods to deal with MVCP. 

4. VARIANTS OF VERTEX COVER 
Now we should talk about variants of the VCP -Capacitated 

VC[8], Connected VC[8] and MAX Partial VC[8] have been 

extensively researched   in terms of polynomial-time Approx. 

With the help of contrast, their parameterized order has not 

been resolved , so it is open ended. We can close this gap by 

showing that, with the size of the  VC  as parameter, 

Capacitated VC and Connected VC  both are fixed-parameter 

tractable while the MAX Partial VC is W[1]-complete. The 

results provide several related interrogations. Although the 

considered variants of VC seem very same as in terms of 

constant-factor Approx, they display a wide range of 

characteristics when investigating their parameter 

complexities. 

 

5. ALGORITHMS FOR VERTEX 

COVER PROBLEM 
We have  two classes of principle procedures: incomplete and 

complete ones.  Complete principle procedure ensures  best or 

true resolution. Hence the full resolution space needs to be 

searched in principle. Incomplete principle procedures, do not 

ensures that the true resolution or the global best is what we 

got. This part of paper provides MAX already researched 

principle procedures to solve VC interrogation. That are (i) 

BB principle procedure approach[4] , (ii) Approx principle 

procedure[4], (iii) Greedy principle procedure approach[4][9] 

(iv) Genetic principle procedure approach[4] (v) PDA(Primal-

Dual)[4] and (v) Alom‘s principle procedure[4]. 

5.1 Approx principle procedure  
A lot of interrogations are important to analyze and optimize 

as getting an optimum resolution is intractable. If the Provided 

interrogation is NP-complete, it is very hard to get a 

polynomial-time principle procedure for resolving it 

accurately, but still, we cannot lose hope. In general, near 

optimality is mostly better. A principle procedure that results 

in near optimal resolutions is known as an Approximation 

(Approx) principle procedure[4][14]. 

Existing approximation algorithm of vertex cover problem 

1 C ← Ø 

2 E′ ← E [G] 

3 while E′ ≠ Ø 

4 do let (u, v) be an arbitrary edge of E′ 

5 C ← C U {u, v} 

6 remove every edge in E′ incident on u or v 

7 return C 

 

5.1.1 Complexity Analysis of the approximate 

vertex cover algorithm 

Since the loop in algorithm 3, on lines (3-6) repeatedly picks 

an edge (u, v) from E′ adds its endpoints u and v to C, and 

deletes all edges in E′ that are covered by either u or v. The 

running time of this algorithm is O (E). 

5.2 Greedy Approach to find VC 
To find result of a most effective interrogation, we find the 

groups of participants having a result that optimizes 

(maximizes or minimizes) the worth of the objective function. 

The greedy principle procedure[9][4] executes step by step. 

Firstly the groups of selected participants is empty. Then at 

every step, we try to find and add the best out of rest 

participants in the groups, our selection must be guided by 

selection function. The selection function depends on the 

present interrogation. For an instance, the selection function in 

the case of MIN weight spanning tree selects an edge of MIN 

weight from the every rest of the edges, an object with MAX 

profit per unit weight out of the rest of objects is chosen for 

placing in the knapsack if knapsack interrogation is the case. 

If the large groups of selected participants is no longer 

correct, we discard the candidate we just added: removed 

candidate is never considered again. In the project, if the 

larger groups is still feasible, then the candidate we just added 

remains in the groups of selected participants from then and 

on. Every time we large the groups of selected participants, 

we find whether the groups now constitutes a resolution of the 

interrogation. 

A generally accepted method to construct successively space 

of resolutions is greedy approach i.e based on the proved 

http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Karp's_21_NP-complete_problems
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/NP-hard
http://en.wikipedia.org/wiki/NP-hard
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principle of selecting the (local) best choice at every stage of 

the principle procedure in order to get the global best of few 

objective function. 

 

5.2.1 Greedy Principle procedures of VC 

interrogation 
1. C ← Ø 

2. while E ≠ Ø 

3. Pick any edge e ∈E and choose an end-point v of e 

4. C ← C U {v} 

5. E ← E \ {e ∈ E : v ∈ e} 

6. return C 

 

5.2.2 Clever Greedy Principle procedure 
1. C ← Ø 

2. while E ≠ Ø 

3. Pick a vertex v ∈V of maximum degree in the current 

graph 

4. C ← C U {v} 

5. E ← E \ {e ∈ E : v ∈ e} 

6. return C 

5.3 BB Principle procedure 
Branch and Bound (BB)[4] is a general principle procedure 

for getting optimum results for various problems and more 

importantly in discrete and combinatory . It contains 

systematic gathering of every candidate resolutions where 

covers of useless participants are discarded, with the help of 

lower and upper assumed bounds of the quantity being 

optimized. Branch-and-bound is a technique for exploring an 

implicit directed acyclic graph like the backtracking method. 

Optimal solutions to some problems like assignment of tasks 

to workers, etc. can be found using the technique of branch-

and-bound. The branch-and-bound (BB) algorithm is a 

complete algorithm, meaning that it guarantees the exact 

solution even though the time complexity may increase 

exponentially with the graph size. Every vertex is set as free 

in the beginning of the principle procedure. The principle 

procedure forward by marking a random free vertices as 

covered if the vertex has free or not included neighbors. The 

size of the biggest found VC is n,. If the n covering marks are 

not in use, the principle procedure can move on with the tree 

searching, else it needs to backtrack. If the principle 

procedure come back to the node via backtracking, then we 

make the vertex non-covered and then the branch of the 

configuration tree is considered. If every  neighbor of node 

are covered, then it is firstly made noticeable and treated as 

non-covered. We use a simple bound to search the 

configuration tree ; we should not  mark any vertex as non-

covered, although it is having non-covered neighbors. 

The bound that we are with the help of in the below principle 

procedure applies the present vertex degree v(i), which 

signifies the no. of non-covered neighbors at a distinct stage 

of the calculation. By including a vertex in the sum we have 

reduced no. of not covered edges by v(i). If various vertices t1, 

t2, . . , tk are covered, the no. of non-covered edges is max 

decreased by v(t1) + v(t2) + . . . . . . + v(tk). Assume that tIn the 

project is a certain stage while we are backtracking the tree, 

we need to uncover D edges non-covered and still m vertices 

to cover. Then a lower bound S that is for the MIN no. of non-

covered edges in the sub tree is Provided by S= Max[0,D-max 

v(t1)+v(t2)+. . .+v(tk)] . 

The below representation shortens the principle procedure for 

recount every arrangements exhibiting a MIN no. of non-

covered edges. Assume G= (V,E) is a one dimension 

representation, n is the no. of vertex to cover and j is the no. 

of edges to cover. In the starting n= x and j= |E|. The variable 

t is assigned with t = |E| and contains the MIN no. of non-

covered edges found so far. The solution of t is passed with 

the help of call by reference. At the beginning every vertices v 

∈ V are made noticable as free. These marks are assumed to 

be passed with the help of call by reference also. Also, it is 

presumed that tIn the project is a groups of (best) resolutions 

can be stored. 

Algorithm min-cover (G, k, uncov, opt)  

begin 

if k = 0 then {leaf of tree reached?} 

begin 

if uncov < opt then {new minimum found?} 

begin 

opt := uncov; 

clear set of stored configurations; 

end; 

store configuration; 

end; 

if bound condition is true then 

return; 

let i∈ V a vertex marked as free of maximal current degree; 

mark i as covered; 

k := k − 1; 

adjust degrees of all neighbours j of i : d(j) :=    d(j) − 1; 

min-cover(G, k, uncov − d(i), opt) {branch into ‗left‗ 

subtree}; 

mark i as uncovered; 

k := k + 1; 

(re)adjust degrees of all neighbours j of i: d(j):= d(j) + 1; 

min-cover (G, k, uncov, opt) {branch into ‗right‗ subtree}; 

mark i as free; 

end 

In the actual implementation, the algorithm does not descend 

further into the tree as well, when no uncovered edges are left. 

In this case, the vertex covers of the corresponding sub tree 

consist of the vertices covered so far and all possible 

selections of k vertices among all uncovered vertices. 

5.4 Genetic Principle procedure 
Genetic principle procedure[4] is a most effective approach 

based on the natural metamorphosis. It maintains a 

aggregation of strings, known as gene carrier that encrypt 

candidate resolutions to an problem The principle procedure 

chooses few parent gene carrier from the aggregation groups 

as per the their fitness worth, which are analyzed with the help 

of fitness function. The most fit gene carrier have more 

chances of getting selected for genetic operations in future 

generation. Different types of genetic processors are applied 

to the selected parent gene carrier, obviously as per the 

possibility of processor, and future generation aggregation 

groups is produced. In every generation, a new groups of 

artificial creatures is created with the help of bits and pieces 

of the most fit gene carrier of the old aggregation. 

Although GA may or may not give correct result, in most 

cases it produces better aggregation as compared to their 

parent aggregation As selected parents are the most fit among 

the whole aggregation groups, and the worse gene carrier die 

off in successive generations. This process is continued till 

some user defined ending   criteria is satisfied. 

GA provide variation processors inspired by natural 

metamorphosis and genetics. The fitness function has a 
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significant role in GA. As it decides how good a gene carrier 

is. The Fitness function can be no. of vertices helpful for 

covering every edges in the one dimension representation.  

 

In HGA, we next generation is produced from two parent 

gene carrier. So, in that way best 50% gene carrier will 

directly go in the future generation with the help of 

reproduction. Every gene carrier is helpful to form next 

generation with the help of heuristic vertex crossover 

processor (HVX). As we believe that every chromosome has 

few important genes, which may become useful to obtain 

global optimum resolution. Then mutation processor is 

applied to next generation. Mutation is helpful to expel local 

minima and it should be applied on every next generation. 

Algorithm HVX  

begin 

V’ = { } 

Create tables VT and ET 

VT = (F(v), N(v)), where F(v) is the frequency of the vertex v 

in P1 and P2, N(v) is the degree of vertex v in G, for ∀ v ∈P1 

and ∀ v ∈ P2 

ET = E (x, y) for ∀ E∈ G 

while ET <> { } do 

Select v1 ∈ VT such that N(v1) > N(v) for ∀ v ∈VT. If more 

than one vertex has same number of degree then select that 

vertex, whose frequency (F(v1)) is high. If still more than one 

vertex is candidate for selection then select any vertex 

randomly. Say v1 

ET = ET — {E(x, y) : x = v1 or y = v1)} 

V’ = V’ — {v1} 

end while 

return V’ 

end 

5.5 Primal-Dual Principle procedure 
A primal-dual principle procedure[4] starts with a infeasible 

primal resolution and an feasible dual. All the way its 

execution this type of  principle procedure improves the dual 

objective function i.e worth of the already dual resolution and 

it decreases the degree of infeasibility of the primal also at the 

similar time. The principle procedure ends as soon as the 

feasible primal resolution is there. The final dual resolution is 

helpful as a lower bound for the best resolution worth by 

means of weak duality. 

1. Start with x = 0 (variables of primal LP) and y = 0 

(variables of dual LP). The conditions that: 

• y is feasible for Dual LP. 

• Primal Complementary Slackness is satisfied. 

 Are invariants and hence, hold for the algorithm. But the 

condition that: 

• Dual Complementary Slackness is satisfied. 

Might not hold at the beginning of algorithm. x does not 

satisfy the primal LP as yet. 

2. Raise some of the ye‗s, either simultaneously or one-by-

one. 

3. Whenever a dual constraint becomes tight, freeze values 

of corresponding y‗s and raise value of corresponding x. 

4. Repeat from Step 2 until all the constraints become tight. 

Now let us consider the primal-dual algorithm for vertex 

cover. 

Primal-Dual Algorithm for Vertex Cover 

1. Start with x = 0 and y = 0. 

2. Pick any edge e for which ye is not frozen yet. 

3. Raise the value of ye until some vertex constraint v goes       

tight. 

4. Freeze all ye‗s for edges incident on v. Raise xv to 1. 

5. Repeat until all ye‗s are frozen. 

5.6 Alom’s principle procedure for VC  
Monjurul alom[4][14] discussed a new principle procedure for 

VC interrogation that provides the efficient approximate 

resolution that is better than existing approximate principle 

procedure, greedy approach and genetic principle procedure. 

This VC principle procedure selects the vertex which has 

MAX no. of edges striking to it. Every the edges are discarded 

striking to that vertex. If more than we vertex have same 

MAX no. of edges, this principle procedure select that vertex 

which have minimum we edge that is not covered by other 

vertices, which has MAX edge. This process is repeated until 

to cover every the vertices of the one dimension 

representation. This principle procedure takes same time as 

the existing approximate principle procedure takes but it 

provides the resolution that is always better than the 

approximate resolution. 

1. OPTIMAL_VT_COVER (E, V) {// E is an edge and V is 

an vertex 

2. V←; 

3. E′ ←E [G] 

4. While (E′ ≠ ) { 

5. M ← Choose vertex which has maximum incident edge; 

6. If (More than one vertex have maximum number of edges) 

then 

7. M ← Choose that node which has at least one edge that is 

not covered by others which have maximum number of 

edges. 

8. V← VU M; 

9. Remove the all incident edges at vertex M; 

10. Count incident edge of new graph.} 

11. Return V

5.6.1 Complexity anlaysis of Alom’s principle 

procedure 
As, the no. of iterations in the loop is at most E. So time 

complexity of this Principle procedure is O (E), where E 

denotes cumulative no. of edges. 

6. RESULT   AND ANALYSIS 
This part provides the analysis of every provided principle 

procedures and complexity as shown below in the table. We 

show the behavior of every researched principle procedures 

such as greedy principle procedure, Approx principle 

procedure, genetic principle procedure, primal-dual principle 

procedure and alom‘s principle procedure on the below one 

dimension representation. 
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Fig.1:  Graph G with 8 vertices 

Table 1: Adjacency List of above graph 

Vertex 

v 

No. of edges 

connected to v 

Connected edges 

a 4 b c e f 

b 3 a d g  

c 3 a d h  

d 4 b c i j 

e 3 a g k  

f 3 a h k  

g 3 b e i  

h 3 c f j  

i 3 d g k  

j 3 d h k  

k 4 e f i j 

6.1 Comparison analysis of presented 

Algorithms on above Graph. 
Algorithm: Branch and bound 

Size of Vertex Cover: 5  

Solution Set: {a,d,g,h,k} 

Complexity: grows exponentially fast with problem size for 

all values of c. 

Remarks: If no vertex cover of the desired size is found, 

some covering marks have to be removed and be placed 

elsewhere, i.e. the algorithm has to backtrack. 

Algorithm: Approximation 

Size of Vertex Cover: 10, 6, 6 

Solution Set: {a,b,c,d,e,g,h,i,j,k}{b,c,g,h,i,k}   {b,c,e,f,i,j} 

Complexity: O(V+E) 

Remarks: This is a polynomial-time 2- approximation 

algorithm means that the solution returned by algorithm is at 

most twice the size of an optimal. 

Algorithm: Greedy , Clever greedy 

Size of Vertex Cover: 7,5 

Solution Set: {a,b,c,g,h,i,k}, {a,d,g,h,k} 

Complexity: O( V+E) , O (logV) 

Remarks: Greedy algorithm is not a 2- Approximation. 

Clever greedy algorithm always gives solutions better than 

simple greedy. 

Algorithm: Genetic 
Size of Vertex Cover: 6 

Solution Set: {a,c,d,g,h,k} 

Complexity: Time complexity measured by the overall 

number of candidate solutions examined until the optimum is 

found. Remarks: GA fails to obtain consistent results for 

specific type of regular graphs. For large problems, the 

growth of the number of evaluations required by GA becomes 

faster. 

Algorithm: Primal dual 
Complexity: O(V log V+E) 

Remarks: It reduces the degree of infeasibility of 

the primal one at the same time. The algorithm terminates as 

soon as the primal solution is feasible. 

Algorithm: Alom‘s 
Size of Vertex Cover: 5 

Solution Set:  {a,d,g,h,k} 

Complexity: O(E) 

Remarks: It gives always optimal solution to the given graph.  

Complexity is same as with approximation algorithm. For 

larger graphs, may be this algorithm lost to give an optimal 

solution. 

We also implemented this algorithm in Java and below given 

is a snapshot of the output  obtained . 

 

7. CONCLUSION 
This research work analyzed performance of the different 

principle procedures on MIN VC for some randomly chosen 

graphs. Different procedures like BB, simple genetic principle 

procedure (GA), greedy principle procedure, alom‘s principle 

procedure and primal dual principle procedure produce 

different results under different situations. 
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1. BB approach forwards further when we calculate a 

bound . If the bound analyzed predicts that any further 

solution found must necessarily not more efficient than 

the efficient resolution found so far, then we do not need 

to explore that part of the graph. The BB principle 

procedure makes choice in the project to put covering 

marks on graph representation. If no VC of the specified 

size is found, backtracking is done which is done in a 

symmetric way which allows investigation of the full 

configuration space. 

2. The standard Approx principle procedure performs by 

choosing the random edge of the graph representation 

thus providing bigger resolution sometimes. This 

principle procedure is a 2-Approx polynomial time 

principle procedure means that the resolution provided 

by principle procedure is at most twice the size of an 

optimum VC, as size of the optimum VC is unknown. 

3. The greedy principle procedure returns better resolution 

to the issue than Approx principle procedure. The 

principle procedure necessarily makes the best choice at 

that point of time. A good greedy principle procedure 

always run further by considering the vertex with the 

highest degree, then adding it to the cover groups, and 

discarding it from the graph, and process is again 

executed. But the greedy heuristic does not guarantees 

always an optimum resolution. 

4. Genetic principle procedure is weaker than a local step of 

BB. For big interrogations, the increment of the no. of 

evaluations required by GA gets faster. The HVX 

required for MIN VC interrogation, performs very well 

and provides optimum resolution fast. As per the HVX 

and LOT (local most effective approach), we can get 

optimum resolution with few generation and aggregation 

size . 

5. The primal dual principle procedure is only helpful for 

weighted one dimension representations and principle 

procedure is a two-Approx. This decreases the degree of 

infeasibility of the primal one at that time. 

6. Under specific situations, Genetic and greedy principle 

procedures surpasses Branch and Bound, that is not an 

astonishing output as Branch and Bound is an efficient 

method that gives accurate global best result. 

7. At last, the alom‘s principle procedure which is the best 

principle procedure for the VC interrogation as it returns 

optimum resolutions in almost cases. This principle 

procedure also executes by selecting  a random edge 

when the condition coincide. So, for few bigger  graphs 

Alom‘s principle procedure may not return the accurate 

optimum resolution . That is why the alom‘s principle 

procedure extension is provided so that it returns every 

possible resolutions i.e best MIN VCs . From every 

possible available solutions we can easily select the 

accurate optimum resolution which we want. Extended 

Aloms principle procedure is more complex as compared 

to others. 
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