
International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.10, June 2016

26

Implementation and Comparison of Vertex Cover

Problem using Various Techniques

Reshu Tyagi Muskaan Batra

ABSTRACT
The problem of finding Minimum Vertex Cover for graph

belongs to the class of NP Complete and plays a key role in

Computer Science Theory. The problems which belong to NP

Complete set are not solvable in polynomial time in any

known way. Since finding Minimum Vertex Cover (MVC) for

a graph belongs to NP Complete class; so we are dubious to

solve it in any polynomial time algorithm. Such problems are

solved by algorithms which promise to give near optimum

solution.

In this paper we have analyzed and scrutinized such

algorithms like greedy algorithm, approximation algorithm,

simple genetic algorithm (GA), primal-dual based algorithm

(PDB), Alom‘s algorithm etc. on random directed and

undirected graphs and found that all the algorithms give near

optimum solution with a negligible performance difference. It

was also observed that out of all the above said algorithms

Alom‘s Algorithm is more effective in finding MVC for

undirected graphs and for weighted graphs, superior

performance is attained by primal-dual based approach.

Further the algorithm was implemented using JAVA and

output demonstrates the various possible combinations of

Minimum Vertex Cover.

Keywords
Vertex Cover, Approximation, Branch and Bound, Greedy,

Alom‘s, Primal Dual, Genetic.

1. INTRODUCTION
The VC interrogation is a NP-complete interrogation [1]. A

interrogation is NP-complete if we cannot find its polynomial-

time principle procedure for resolving it to the accurate point.

However, this does not mean this is all. We have 2 approaches

for resolving NP-complete interrogations .Firstly if the real

inputs are small, the principle procedure with no. raised to an

exponent running time could be perfectly satisfactory. In

another approach, it could be easy to find in time a ―near

optimum resolutions‖. In general, the near optimality or

Approx is generally good enough. A principle procedure

giving ―near-optimum‖ resolution is known as Approx

principle procedure.

In the subject of computer education, the ―VC interrogation”

or ―node cover interrogation” is one of the 21 Karp NP-

complete interrogations.

MIN VC problem (MVCP)[2] has attracted many researchers

and practitioners due to two reasons. First one is for its NP-

completeness and secondly, it can be helpful for resolving

many tough real-life difficulties that can be formulated as

instances of this problem but we have only few researches

existing that analyze the performance and output of

metamorphosis methods and principle procedures.

Now let us elaborate what exactly does this MIN vertex cover

problem(MVCP)[2] means.

Explanation: Given a one dimension representation G= (V,

E) where V and E are respectively vertex and edges. A vertex

cover (VC) of a provided undirected one dimension

representation is a subset V‘⊆V such that if (v, u) is an edge

of G(the one dimension representation provided), then either v

belongs to V‘ or u belongs to V‘ or both.

So, the cumulative size of the VC is the cumulative no. of

vertices present. The VC problem (VCP) is ―To find MIN

sized VC in an undirected one dimension representation‖.

Such type of VC is known as an OVC (optimum VC). Few

books describe an efficient Approx principle procedure with

O(E) time for VC problem(VCP) .

We have 2 versions of the MIN VC (MVC): First is the

decision version and second is optimization. In the decision

version, we have to verify if there exists a vertex cover (VC)

of a provided size for a one dimension representation. On the

other side, in the optimization version of interrogation, we

find a VC of MIN size.

MVC is amongst the Karp‘s21 [3] diverse combinational and

one dimension representation theory interrogations, which are

NP-complete. MVC is an important case of the ―groups cover

interrogations‖ which take inputs as an arbitrary gathering of

sub covers S = (S1, S2, .., Sn) of the universal groups U, and

the purpose is to find the smallest subset of sub covers from S

whose union is U. The MVC interrogation is also related to

other complex one dimension representation interrogations

and so it attracts the researchers towards this field of

designing, most effective and Approx principle procedures.

The physicists recently were driven towards the study of NP-

complete interrogations like VC. The reason for this is, when

studied on suitable random ensembles, the interrogation

shows phase transitions in the solvability which often

coincides with the peaks in the typical computation

complexity or changes of the typical complexity from no.

raised to an exponent to polynomial.

2. PROBLEM STATEMENT
We are given a random undirected Graph G=(V,E) and we

have to find a minimum set of vertices V‘ such that all the

edges are incident to at least one vertex form the vertex set V‘.

The minimum vertex cover problem is the optimization

problem of finding a smallest vertex cover in a given graph.

INSTANCE: Graph G

OUTPUT: Smallest number k such that G has a vertex cover of

size k.

http://en.wikipedia.org/wiki/Optimization_problem
http://en.wikipedia.org/wiki/Optimization_problem
http://en.wikipedia.org/wiki/Optimization_problem

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.10, June 2016

27

If the problem is stated as a decision problem, it is called

the vertex cover problem:

INSTANCE: Graph G and positive integer k.

QUESTION: Does G have a vertex cover of size at most k?

The vertex cover problem is an NP-complete problem: it was

one of Karp's 21 NP-complete problems. It is often used

in computational complexity theory as a starting point for NP-

hardness proofs.

3. RELATED WORK
Various researchers have proposed various methods to solve

NP Complete Vertex Cover Problem. Delbot and C.

Laforest[5] had proposed an effective algorithm in which they

scanned all vertices of a graph from left to right depending

upon one condition , which was―u is added to vertex cover if

and only if it has at least one neighbor not in the cover‖.This

algorithm is called as LIST LEFT [5]which is given as

follows:

Labeled graph L(G) = (L(V), E)

1. A ← Ø

2. For each vertex, v є L(V) do

3. If v has at least one right neighbor, then

4. 4.A ←A U {v}

5. Return A

Another technique to deal with this problem is SORTED-

LL[7], which is also denoted by SLL, is an extension of

LISTLEFT and has been described in the article of D. Avis

and T. Imamura. It solves the problem as―if there is at least

one v є N(u)with lower degree, select u; otherwise, if u has

only neighbor with higher degree, u is not selected.‖

Eric Angel , Romain Campigotto and Christian Laforest [6]

suggested the algorithm ANTI SORTED-LL, works like

SORTED-LL on sorted lists, but it reads the lists from the end

to the beginning. Algo is as follows:

Labeled graph L(G) = (L(V), E)

1. A ← Ø

2. For each vertex, v є L(V) do

3. If u has at least one right neighbor with a larger degree or a

left neighbor with the same degree, then

4.A ←A U {v}

5. Return A

Apart from this various other authors and researchers have

used and proposed various methods to deal with MVCP.

4. VARIANTS OF VERTEX COVER
Now we should talk about variants of the VCP -Capacitated

VC[8], Connected VC[8] and MAX Partial VC[8] have been

extensively researched in terms of polynomial-time Approx.

With the help of contrast, their parameterized order has not

been resolved , so it is open ended. We can close this gap by

showing that, with the size of the VC as parameter,

Capacitated VC and Connected VC both are fixed-parameter

tractable while the MAX Partial VC is W[1]-complete. The

results provide several related interrogations. Although the

considered variants of VC seem very same as in terms of

constant-factor Approx, they display a wide range of

characteristics when investigating their parameter

complexities.

5. ALGORITHMS FOR VERTEX

COVER PROBLEM
We have two classes of principle procedures: incomplete and

complete ones. Complete principle procedure ensures best or

true resolution. Hence the full resolution space needs to be

searched in principle. Incomplete principle procedures, do not

ensures that the true resolution or the global best is what we

got. This part of paper provides MAX already researched

principle procedures to solve VC interrogation. That are (i)

BB principle procedure approach[4] , (ii) Approx principle

procedure[4], (iii) Greedy principle procedure approach[4][9]

(iv) Genetic principle procedure approach[4] (v) PDA(Primal-

Dual)[4] and (v) Alom‘s principle procedure[4].

5.1 Approx principle procedure
A lot of interrogations are important to analyze and optimize

as getting an optimum resolution is intractable. If the Provided

interrogation is NP-complete, it is very hard to get a

polynomial-time principle procedure for resolving it

accurately, but still, we cannot lose hope. In general, near

optimality is mostly better. A principle procedure that results

in near optimal resolutions is known as an Approximation

(Approx) principle procedure[4][14].

Existing approximation algorithm of vertex cover problem

1 C ← Ø

2 E′ ← E [G]

3 while E′ ≠ Ø

4 do let (u, v) be an arbitrary edge of E′

5 C ← C U {u, v}

6 remove every edge in E′ incident on u or v

7 return C

5.1.1 Complexity Analysis of the approximate

vertex cover algorithm

Since the loop in algorithm 3, on lines (3-6) repeatedly picks

an edge (u, v) from E′ adds its endpoints u and v to C, and

deletes all edges in E′ that are covered by either u or v. The

running time of this algorithm is O (E).

5.2 Greedy Approach to find VC
To find result of a most effective interrogation, we find the

groups of participants having a result that optimizes

(maximizes or minimizes) the worth of the objective function.

The greedy principle procedure[9][4] executes step by step.

Firstly the groups of selected participants is empty. Then at

every step, we try to find and add the best out of rest

participants in the groups, our selection must be guided by

selection function. The selection function depends on the

present interrogation. For an instance, the selection function in

the case of MIN weight spanning tree selects an edge of MIN

weight from the every rest of the edges, an object with MAX

profit per unit weight out of the rest of objects is chosen for

placing in the knapsack if knapsack interrogation is the case.

If the large groups of selected participants is no longer

correct, we discard the candidate we just added: removed

candidate is never considered again. In the project, if the

larger groups is still feasible, then the candidate we just added

remains in the groups of selected participants from then and

on. Every time we large the groups of selected participants,

we find whether the groups now constitutes a resolution of the

interrogation.

A generally accepted method to construct successively space

of resolutions is greedy approach i.e based on the proved

http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/Karp's_21_NP-complete_problems
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/NP-hard
http://en.wikipedia.org/wiki/NP-hard

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.10, June 2016

28

principle of selecting the (local) best choice at every stage of

the principle procedure in order to get the global best of few

objective function.

5.2.1 Greedy Principle procedures of VC

interrogation
1. C ← Ø

2. while E ≠ Ø

3. Pick any edge e ∈E and choose an end-point v of e

4. C ← C U {v}

5. E ← E \ {e ∈ E : v ∈ e}

6. return C

5.2.2 Clever Greedy Principle procedure
1. C ← Ø

2. while E ≠ Ø

3. Pick a vertex v ∈V of maximum degree in the current

graph

4. C ← C U {v}

5. E ← E \ {e ∈ E : v ∈ e}

6. return C

5.3 BB Principle procedure
Branch and Bound (BB)[4] is a general principle procedure

for getting optimum results for various problems and more

importantly in discrete and combinatory . It contains

systematic gathering of every candidate resolutions where

covers of useless participants are discarded, with the help of

lower and upper assumed bounds of the quantity being

optimized. Branch-and-bound is a technique for exploring an

implicit directed acyclic graph like the backtracking method.

Optimal solutions to some problems like assignment of tasks

to workers, etc. can be found using the technique of branch-

and-bound. The branch-and-bound (BB) algorithm is a

complete algorithm, meaning that it guarantees the exact

solution even though the time complexity may increase

exponentially with the graph size. Every vertex is set as free

in the beginning of the principle procedure. The principle

procedure forward by marking a random free vertices as

covered if the vertex has free or not included neighbors. The

size of the biggest found VC is n,. If the n covering marks are

not in use, the principle procedure can move on with the tree

searching, else it needs to backtrack. If the principle

procedure come back to the node via backtracking, then we

make the vertex non-covered and then the branch of the

configuration tree is considered. If every neighbor of node

are covered, then it is firstly made noticeable and treated as

non-covered. We use a simple bound to search the

configuration tree ; we should not mark any vertex as non-

covered, although it is having non-covered neighbors.

The bound that we are with the help of in the below principle

procedure applies the present vertex degree v(i), which

signifies the no. of non-covered neighbors at a distinct stage

of the calculation. By including a vertex in the sum we have

reduced no. of not covered edges by v(i). If various vertices t1,

t2, . . , tk are covered, the no. of non-covered edges is max

decreased by v(t1) + v(t2) + + v(tk). Assume that tIn the

project is a certain stage while we are backtracking the tree,

we need to uncover D edges non-covered and still m vertices

to cover. Then a lower bound S that is for the MIN no. of non-

covered edges in the sub tree is Provided by S= Max[0,D-max

v(t1)+v(t2)+. . .+v(tk)] .

The below representation shortens the principle procedure for

recount every arrangements exhibiting a MIN no. of non-

covered edges. Assume G= (V,E) is a one dimension

representation, n is the no. of vertex to cover and j is the no.

of edges to cover. In the starting n= x and j= |E|. The variable

t is assigned with t = |E| and contains the MIN no. of non-

covered edges found so far. The solution of t is passed with

the help of call by reference. At the beginning every vertices v

∈ V are made noticable as free. These marks are assumed to

be passed with the help of call by reference also. Also, it is

presumed that tIn the project is a groups of (best) resolutions

can be stored.

Algorithm min-cover (G, k, uncov, opt)

begin

if k = 0 then {leaf of tree reached?}

begin

if uncov < opt then {new minimum found?}

begin

opt := uncov;

clear set of stored configurations;

end;

store configuration;

end;

if bound condition is true then

return;

let i∈ V a vertex marked as free of maximal current degree;

mark i as covered;

k := k − 1;

adjust degrees of all neighbours j of i : d(j) := d(j) − 1;

min-cover(G, k, uncov − d(i), opt) {branch into ‗left‗

subtree};

mark i as uncovered;

k := k + 1;

(re)adjust degrees of all neighbours j of i: d(j):= d(j) + 1;

min-cover (G, k, uncov, opt) {branch into ‗right‗ subtree};

mark i as free;

end

In the actual implementation, the algorithm does not descend

further into the tree as well, when no uncovered edges are left.

In this case, the vertex covers of the corresponding sub tree

consist of the vertices covered so far and all possible

selections of k vertices among all uncovered vertices.

5.4 Genetic Principle procedure
Genetic principle procedure[4] is a most effective approach

based on the natural metamorphosis. It maintains a

aggregation of strings, known as gene carrier that encrypt

candidate resolutions to an problem The principle procedure

chooses few parent gene carrier from the aggregation groups

as per the their fitness worth, which are analyzed with the help

of fitness function. The most fit gene carrier have more

chances of getting selected for genetic operations in future

generation. Different types of genetic processors are applied

to the selected parent gene carrier, obviously as per the

possibility of processor, and future generation aggregation

groups is produced. In every generation, a new groups of

artificial creatures is created with the help of bits and pieces

of the most fit gene carrier of the old aggregation.

Although GA may or may not give correct result, in most

cases it produces better aggregation as compared to their

parent aggregation As selected parents are the most fit among

the whole aggregation groups, and the worse gene carrier die

off in successive generations. This process is continued till

some user defined ending criteria is satisfied.

GA provide variation processors inspired by natural

metamorphosis and genetics. The fitness function has a

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.10, June 2016

29

significant role in GA. As it decides how good a gene carrier

is. The Fitness function can be no. of vertices helpful for

covering every edges in the one dimension representation.

In HGA, we next generation is produced from two parent

gene carrier. So, in that way best 50% gene carrier will

directly go in the future generation with the help of

reproduction. Every gene carrier is helpful to form next

generation with the help of heuristic vertex crossover

processor (HVX). As we believe that every chromosome has

few important genes, which may become useful to obtain

global optimum resolution. Then mutation processor is

applied to next generation. Mutation is helpful to expel local

minima and it should be applied on every next generation.

Algorithm HVX

begin

V’ = { }

Create tables VT and ET

VT = (F(v), N(v)), where F(v) is the frequency of the vertex v

in P1 and P2, N(v) is the degree of vertex v in G, for ∀ v ∈P1

and ∀ v ∈ P2

ET = E (x, y) for ∀ E∈ G

while ET <> { } do

Select v1 ∈ VT such that N(v1) > N(v) for ∀ v ∈VT. If more

than one vertex has same number of degree then select that

vertex, whose frequency (F(v1)) is high. If still more than one

vertex is candidate for selection then select any vertex

randomly. Say v1

ET = ET — {E(x, y) : x = v1 or y = v1)}

V’ = V’ — {v1}

end while

return V’

end

5.5 Primal-Dual Principle procedure
A primal-dual principle procedure[4] starts with a infeasible

primal resolution and an feasible dual. All the way its

execution this type of principle procedure improves the dual

objective function i.e worth of the already dual resolution and

it decreases the degree of infeasibility of the primal also at the

similar time. The principle procedure ends as soon as the

feasible primal resolution is there. The final dual resolution is

helpful as a lower bound for the best resolution worth by

means of weak duality.

1. Start with x = 0 (variables of primal LP) and y = 0

(variables of dual LP). The conditions that:

• y is feasible for Dual LP.

• Primal Complementary Slackness is satisfied.

 Are invariants and hence, hold for the algorithm. But the

condition that:

• Dual Complementary Slackness is satisfied.

Might not hold at the beginning of algorithm. x does not

satisfy the primal LP as yet.

2. Raise some of the ye‗s, either simultaneously or one-by-

one.

3. Whenever a dual constraint becomes tight, freeze values

of corresponding y‗s and raise value of corresponding x.

4. Repeat from Step 2 until all the constraints become tight.

Now let us consider the primal-dual algorithm for vertex

cover.

Primal-Dual Algorithm for Vertex Cover

1. Start with x = 0 and y = 0.

2. Pick any edge e for which ye is not frozen yet.

3. Raise the value of ye until some vertex constraint v goes

tight.

4. Freeze all ye‗s for edges incident on v. Raise xv to 1.

5. Repeat until all ye‗s are frozen.

5.6 Alom’s principle procedure for VC
Monjurul alom[4][14] discussed a new principle procedure for

VC interrogation that provides the efficient approximate

resolution that is better than existing approximate principle

procedure, greedy approach and genetic principle procedure.

This VC principle procedure selects the vertex which has

MAX no. of edges striking to it. Every the edges are discarded

striking to that vertex. If more than we vertex have same

MAX no. of edges, this principle procedure select that vertex

which have minimum we edge that is not covered by other

vertices, which has MAX edge. This process is repeated until

to cover every the vertices of the one dimension

representation. This principle procedure takes same time as

the existing approximate principle procedure takes but it

provides the resolution that is always better than the

approximate resolution.

1. OPTIMAL_VT_COVER (E, V) {// E is an edge and V is

an vertex

2. V←;

3. E′ ←E [G]

4. While (E′ ≠) {

5. M ← Choose vertex which has maximum incident edge;

6. If (More than one vertex have maximum number of edges)

then

7. M ← Choose that node which has at least one edge that is

not covered by others which have maximum number of

edges.

8. V← VU M;

9. Remove the all incident edges at vertex M;

10. Count incident edge of new graph.}

11. Return V

5.6.1 Complexity anlaysis of Alom’s principle

procedure
As, the no. of iterations in the loop is at most E. So time

complexity of this Principle procedure is O (E), where E

denotes cumulative no. of edges.

6. RESULT AND ANALYSIS
This part provides the analysis of every provided principle

procedures and complexity as shown below in the table. We

show the behavior of every researched principle procedures

such as greedy principle procedure, Approx principle

procedure, genetic principle procedure, primal-dual principle

procedure and alom‘s principle procedure on the below one

dimension representation.

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.10, June 2016

30

Fig.1: Graph G with 8 vertices

Table 1: Adjacency List of above graph

Vertex

v

No. of edges

connected to v

Connected edges

a 4 b c e f

b 3 a d g

c 3 a d h

d 4 b c i j

e 3 a g k

f 3 a h k

g 3 b e i

h 3 c f j

i 3 d g k

j 3 d h k

k 4 e f i j

6.1 Comparison analysis of presented

Algorithms on above Graph.
Algorithm: Branch and bound

Size of Vertex Cover: 5

Solution Set: {a,d,g,h,k}

Complexity: grows exponentially fast with problem size for

all values of c.

Remarks: If no vertex cover of the desired size is found,

some covering marks have to be removed and be placed

elsewhere, i.e. the algorithm has to backtrack.

Algorithm: Approximation

Size of Vertex Cover: 10, 6, 6

Solution Set: {a,b,c,d,e,g,h,i,j,k}{b,c,g,h,i,k} {b,c,e,f,i,j}

Complexity: O(V+E)

Remarks: This is a polynomial-time 2- approximation

algorithm means that the solution returned by algorithm is at

most twice the size of an optimal.

Algorithm: Greedy , Clever greedy

Size of Vertex Cover: 7,5

Solution Set: {a,b,c,g,h,i,k}, {a,d,g,h,k}

Complexity: O(V+E) , O (logV)

Remarks: Greedy algorithm is not a 2- Approximation.

Clever greedy algorithm always gives solutions better than

simple greedy.

Algorithm: Genetic
Size of Vertex Cover: 6

Solution Set: {a,c,d,g,h,k}

Complexity: Time complexity measured by the overall

number of candidate solutions examined until the optimum is

found. Remarks: GA fails to obtain consistent results for

specific type of regular graphs. For large problems, the

growth of the number of evaluations required by GA becomes

faster.

Algorithm: Primal dual
Complexity: O(V log V+E)

Remarks: It reduces the degree of infeasibility of

the primal one at the same time. The algorithm terminates as

soon as the primal solution is feasible.

Algorithm: Alom‘s
Size of Vertex Cover: 5

Solution Set: {a,d,g,h,k}

Complexity: O(E)

Remarks: It gives always optimal solution to the given graph.

Complexity is same as with approximation algorithm. For

larger graphs, may be this algorithm lost to give an optimal

solution.

We also implemented this algorithm in Java and below given

is a snapshot of the output obtained .

7. CONCLUSION
This research work analyzed performance of the different

principle procedures on MIN VC for some randomly chosen

graphs. Different procedures like BB, simple genetic principle

procedure (GA), greedy principle procedure, alom‘s principle

procedure and primal dual principle procedure produce

different results under different situations.

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.10, June 2016

31

1. BB approach forwards further when we calculate a

bound . If the bound analyzed predicts that any further

solution found must necessarily not more efficient than

the efficient resolution found so far, then we do not need

to explore that part of the graph. The BB principle

procedure makes choice in the project to put covering

marks on graph representation. If no VC of the specified

size is found, backtracking is done which is done in a

symmetric way which allows investigation of the full

configuration space.

2. The standard Approx principle procedure performs by

choosing the random edge of the graph representation

thus providing bigger resolution sometimes. This

principle procedure is a 2-Approx polynomial time

principle procedure means that the resolution provided

by principle procedure is at most twice the size of an

optimum VC, as size of the optimum VC is unknown.

3. The greedy principle procedure returns better resolution

to the issue than Approx principle procedure. The

principle procedure necessarily makes the best choice at

that point of time. A good greedy principle procedure

always run further by considering the vertex with the

highest degree, then adding it to the cover groups, and

discarding it from the graph, and process is again

executed. But the greedy heuristic does not guarantees

always an optimum resolution.

4. Genetic principle procedure is weaker than a local step of

BB. For big interrogations, the increment of the no. of

evaluations required by GA gets faster. The HVX

required for MIN VC interrogation, performs very well

and provides optimum resolution fast. As per the HVX

and LOT (local most effective approach), we can get

optimum resolution with few generation and aggregation

size .

5. The primal dual principle procedure is only helpful for

weighted one dimension representations and principle

procedure is a two-Approx. This decreases the degree of

infeasibility of the primal one at that time.

6. Under specific situations, Genetic and greedy principle

procedures surpasses Branch and Bound, that is not an

astonishing output as Branch and Bound is an efficient

method that gives accurate global best result.

7. At last, the alom‘s principle procedure which is the best

principle procedure for the VC interrogation as it returns

optimum resolutions in almost cases. This principle

procedure also executes by selecting a random edge

when the condition coincide. So, for few bigger graphs

Alom‘s principle procedure may not return the accurate

optimum resolution . That is why the alom‘s principle

procedure extension is provided so that it returns every

possible resolutions i.e best MIN VCs . From every

possible available solutions we can easily select the

accurate optimum resolution which we want. Extended

Aloms principle procedure is more complex as compared

to others.

8. ACKNOWLEDGEMENT
We would like to thank all the authors and researchers who

have done valuable research on the above discussed topic. We

would also like to express our gratitude to Dr. Deepak Garg

and Mr. K.V.R Kumar [4]. His research work on this topic

was very valuable and we were able to write this paper. We

humbly extend our thanks to all the people whose research co-

operated us in writing this paper.

9. REFERENCES
[1] http://cse.unl.edu/~choueiry/Documents/intro_to_npc.pdf

[2] https://en.wikipedia.org/wiki/Vertex_cover

[3] Richard M. Karp ―Reducibility among Combinatorial

Problems‖

http://www.cs.berkeley.edu/~luca/cs172/karp.pdf

[4] http://www.gdeepak.com/thesisme/thesisChoosing%20th

e%20Efficient%20Algorithm%20for%20Vertex%20Cov

er%20problem.pdf

[5] Delbot and C. Laforest ―A Better list heuristic for vertex

Cover‖ Inf. Process. Lett. 107, 125–127 (2008)

[6] Eric Angel , Romain Campigotto and Christian Laforest

―Algorithm for the vertex cover problem on large

graphs.‖ IBISC Research report (2010)

[7] Kartik Shah, Praveenkumar Reddy and R. Selvakumar

Vertex Cover Problem- Revised Approximation

Algorithm

[8] Jiong Guo, Rolf Niedermeier et al. ―Parameterized

Complexity of Vertex Cover Variants‖ Institut f¨ur

Informatik, Friedrich-Schiller-Universit¨at Jena,

[9] Harsh Bhasin, Mohammed Amini ―The Applicability of

Genetic Algorithm to Vertex Cover‖ International

Journal of Computer Applications(0975-8887) Volume

123 No. 17, August 2015

[10] Omar Kettani, Faycal Ramdani, Benaissa Tadili ―A

Heuristic Approach for the vertex Cover Problem‖

IJCA(0975-8887)Volume 82, No.4-2013

[11] Imran Khan, Sangeen Khan ―Experimental Comparison

of Five Approximation Algorithms for minimum Vertex

Cover‖ International Journal of u- and e- Service,

Science and Technology Vol. 7, No. 6 (2014), pp. 69-84

[12] Sushil Chandra Dimri, Kamlesh Chandra Purohit,

Durgesh Pant ―A greedy approach based Algorithm for

the Vertex Cover Problem‖ International Journal of

Scientific and Engineering Research Volume-4, Issue-3,

March 2013

[13] Mohammed Eshtey et al. ―NMVSA greedy solution for

Vertex Cover Problem‖ IJACSA) International Journal of

Advanced Computer Science and Applications, Vol. 7,

No. 3, 2016

[14] Soumya Godi et al. ―Several Algorithms to solve vertex

Cover Problem‖ IJCMS, Vol.4, Issue 4, April 2015

IJCATM : www.ijcaonline.org

http://cse.unl.edu/~choueiry/Documents/intro_to_npc.pdf
https://en.wikipedia.org/wiki/Vertex_cover
http://www.gdeepak.com/thesisme/thesisChoosing%20the%20Efficient%20Algorithm%20for%20Vertex%20Cover%20problem.pdf
http://www.gdeepak.com/thesisme/thesisChoosing%20the%20Efficient%20Algorithm%20for%20Vertex%20Cover%20problem.pdf
http://www.gdeepak.com/thesisme/thesisChoosing%20the%20Efficient%20Algorithm%20for%20Vertex%20Cover%20problem.pdf

