
International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.11, June 2016

35

A Novel Ternary Search Algorithm

Nitin Arora
Dept. of Computer Science &

Engineering
WIT, Dehradun, Uttarakhand,

India

Mamta Martolia Arora
Dept. of Computer Science &

Engineering
WIT, Dehradun, Uttarakhand,

India

Esha Arora
Dept. of Computer Science &

Engineering
DIET, Rishikesh, Uttarakhand,

India

ABSTRACT
Searching is an algorithm that search a particular element in a

given list of elements. Sorting Technique is frequently used

in a large variety of important applications to search a

particular element. Several Searching Algorithms of different

time and space complexity are exist and used. This paper

provides a novel searching algorithm Ternary search which is

based on dividing the given elements into three parts. We also

compare the Ternary search algorithm with Linear Search and

Binary Search. MATLAB is used for implementation and

Analysis of CPU time taken for all the three searching

algorithms used. Linear search can be used with any random

array but for binary search and ternary search sorted array is

required. Result shows that ternary search algorithm requires

less time for search any particular element.

Keywords
Binary Search, Linear Search, Algorithm, Data Structures

1. INTRODUCTION
Searching is an algorithm that search a particular element in a

given list of elements. Sorting Technique is frequently used

in a large variety of important applications to search a

particular element. Several Searching Algorithms of different

time and space complexity are exist and used. This paper

discussed and compare the previously exist searching

algorithms.

This paper provides a novel searching algorithm Ternary

search which is based on dividing the given elements into

three parts. In this paper the comparison of the Ternary search

algorithm with Linear Search and Binary Search is also has

been discussed.

The remainder of this paper is organized as follows. Section 2

introduces the Related Work; Section 3 describes our

modified ternary search algorithm; Conclusion and future

scope in Section 4; given acknowledgments in Section 5 and

all the used references are given in section 6.

2. RELATED WORK
A well defined set of instructions for solving a particular kind

of problem. Algorithms exist for systematically solving many

types of problems like sorting, searching etc.

2.1 Linear Search

Systematically enumerate all possible values and compare to

value being sought. For an array, iterate from the beginning to

the end, and test each item in the array.

2.1.1 Complexity Analysis of Linear Search
We can have three cases to analyze an algorithm:

Worst Case Analysis (Usually Done)
In the worst case analysis, we calculate upper bound on

running time of an algorithm. We must know the case that

causes maximum number of operations to be executed. For

Linear Search, the worst case happens when the element to be

searched (x in the above code) is not present in the array.

When x is not present, the search() functions compares it with

all the elements of arr[] one by one. Therefore, the worst case

time complexity of linear search would be Θ(n).

Average Case Analysis (Sometimes done)
In average case analysis, we take all possible inputs and

calculate computing time for all of the inputs. Sum all the

calculated values and divide the sum by total number of

inputs. We must know (or predict) distribution of cases. For

the linear search problem, let us assume that all cases are

uniformly distributed (including the case of x not being

present in array). So we sum all the cases and divide the sum

by (n+1). Following is the value of average case time

complexity

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑎𝑠𝑒 𝑇𝑖𝑚𝑒 =
 𝜃 𝑖 𝑛+1

𝑖=1

 𝑛+1

=
𝜃(𝑛 + 1 ∗ (𝑛 + 2)/2)

(𝑛 + 1)

= 𝜃(𝑛)

Best Case Analysis (Bogus)
In the best case analysis, we calculate lower bound on running

time of an algorithm. We must know the case that causes

minimum number of operations to be executed. In the linear

search problem, the best case occurs when x is present at the

// Search for a matching String val in the array vals.

// If found, return index. If not found, return -1.

int LinearSearch(int Array[], int val) {

// Loop over all items in the array

for (int i=0; i<vals.length; i++) {

// Compare items

int rslt = val.compareTo(vals[i]);

if (rslt == 0) { // Found it

return i; // Return index

}

}

return -1; // If we get this far, val was not found.

http://en.wikipedia.org/wiki/Uniform_distribution_%28discrete%29

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.11, June 2016

36

first location. The number of operations in the best case is

constant (not dependent on n). So time complexity in the best

case would be θ(1)

2.2 Binary Search
Quickly find an item (val) in a sorted list.

Procedure:
1. Init min and max variables to lowest and highest index

2. Repeat while min ≤#max,

a. Compare item at the middle index with that being

sought (val)

b. If item at middle, equals val, return middle

c. If val comes before middle, then reset max to

middle-1

d. If val comes after middle, reset min to middle+1

3. If min >#max, val not found

Complexity Analysis of Binary Search
After 1st iteration, N/2 items remain (N/21)

After 2nd iteration, N/4 items remain (N/22)

After 3rd iteration, N/8 items remain (N/23)

Search stops when items to search (N/2K) → 1

i.e. N = 2K, log2(N) = K

Worst case: Number of iterations is log2(N)

It is said that Binary Search is a logarithmic algorithm and

executes in O(logN) time.

3. OUR MODIFIED TERNARY

SEARCH ALGORITHM
In Ternary Search Algorithm we divide the given array into

three equal parts. The first part contains the elements from

index 0 to index n/3, second part contains the elements from

index (
n

3
 + 1) to

2n

3
 and the third part contains the elements

from index (
2n

3
+ 1) to n. The element be to search can lie in

either of the three parts.

Procedure:

3.1 Complexity Analysis of Binary Search
After 1st iteration, N/3 items remain (N/31)

After 2nd iteration, N/9 items remain (N/32)

After 3rd iteration, N/27 items remain (N/33)

Search stops when items to search (N/3K) → 1

i.e. N = 3K, log3(𝑁) = K

Worst case: Number of iterations is log3(𝑁), which is better

than binary search searching time log2(𝑁)

4. CONCLUSION AND FUTURE SCOPE
From the results it can be concluded that Ternary Search

Algorithm is working well for all length of input values. It

takes lesser CPU time than existing searching algorithm linear

search and binary search. In the future more effective

searching algorithm can be proposed.

5. ACKNOWLEDGMENTS
My heartily thanks to my wife Ms. Mamta Martolia Arora,

Assistant Professor, WIT Dehradun for her valuable support

in writing this paper.

6. REFERENCES
[1] Arora, N., Tamta, V., and Kumar S. 2012. A Novel

Sorting Algorithm and Comparison with Bubble Sort and

Selection Sort. International Journal of Computer

Applications. Vol 45. No 1. 31-32

[2] Herbert Schildt Tata McGraw-Hill [2005], “The

Complete Reference C fourth Edition”

[3] Alfred V., Aho J., Horroroft, Jeffrey D.U.(2002)

Data Structures and Algorithms.

[4] Frank M.C. (2004) Data Abstraction and Problem

Solving with C++. US: Pearson Education, Inc

[5] Cormen T.H., Leiserson C.E., Rivest R.L. and Stein

C.(2003) Introduction to Algorithms MIT Press,

Cambridge, MA, 2nd edition

[6] Seymour Lipschutz (2009) Data Structure with C,

Schaum Series, Tata McGraw-Hill Education.

1.  Init min and max variables to lowest and highest

index

2.  Repeat while min ≤ max,

 a. calculate middle1 = (min + max)/3 and middle2 =

(middle1+max)/2.

 b.  Compare item at the middle1 and middle2 index

with that being sought (val)

 c.  If item at middle1 or middle2, equals val, return

val found

 d.  If val comes before middle1, then reset max to

middle1-1

 e.  If val comes after middle2, reset min to middle2+1

 f. If val comes after middle1 and before middle2 then

reset min to middle1+1 and max to middle2-1.

3.  If min > max, val not found

 // Search for a matching val String in the String array vals

// If found, return index. If not found, return -1

// Use binary search.

 int bSearch(String val, String[] vals) {

 int min = 0;

 int max = vals.length-1;

 int mid;

 int rslt;

 while (min <= max) {

 mid = int((max + min)/2); // Compute next index

 rslt = val.compareTo(vals[mid]); // Compare values

 if (rslt == 0) { // Found it

 return mid; // Return index

 } else if (rslt < 0) { // val is before

vals[mid]

 max = mid - 1; // Reset max to item

before mid

 } else { // val is after vals[mid]

 min = mid + 1; // Reset min to item

after mid

 }

 }

 // If we get this far, val was not found.

 return -1;

}

IJCATM : www.ijcaonline.org

