
International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.12, June 2016

42

Autocomplete Text using Graph Database

Rahul Patel
K. J. Somaiya College of

Engineering

Sanket Sheth
K. J. Somaiya College of

Engineering

Kavita Kelkar
K. J. Somaiya College of

Engineering

ABSTRACT

This paper gives the idea about autocomplete predictive text

search coupled with using graph database for storing various

nodes. Firstly, the paper focuses on the search bar developed

using web technologies that is platform independent and can

be deployed on any system. It deals with the Jquery and

AJAX mechanisms to give the user immediate autocomplete

results before he or she has finished typing. Secondly, the

paper discusses the role of a graph database technology used

named Neo4j that stores nodes and orders relationships

between them. The use of Cypher queries has been explained

to retrieve the data from the graph database and JSON encode

it on the screen where the user’s current focus remains.

Keywords
AJAX, HTML, PHP,JQuery

1. INTRODUCTION
There are range of predictive text completion products used in

the industry most notable is the auto-complete software used

by google.com who use natural language user interface to

execute this and depend on tons of storage devices to store the

database. Basic idea behind this is that a user cannot type as

fast as he or she can think. An autocomplete text input comes

real handy as it just doesn’t save precious time but also gives

a range of predictions to the user depending upon his or her

preferences to choose from.

The web in today’s world has become very important as there

are billions of people using it everyday. The amount of data

stored and that appears on the web is humongous. What is

more important is to search for something in particular that a

user wants from this ocean of data and even before the

process of searching the data by indexing or some other

mechanism takes place, giving the user a list of choices on

what he or she wants to search becomes essential and that too

before they have finished typing it.

All data irrespective of the data structure or the technology

used, is stored and referred to as some or the other node.

Using the functionality of an autocomplete search bar means

that the software or the web page should be well aware of

where the data is stored, how to establish a connection with

and and how and when to access it which may include reading

the data or manipulating it. Mechanisms including but not

limited to flat files and relational databases can be used for the

same reason. Choosing a data structure like an array and

storing data in it in flat files is a very naïve way of doing it.

Besides relational databases like SQL services work fine

when it comes to dealing with fewer nodes and limited

functionalities. Redundancy, scalability and flexibility

becomes a problem when an efficient service needs to be

delivered.

The use of graph database becomes thus empirical. It becomes

easier to utilize the data, storing it, reading it or manipulating

it. The graph database will have nodes in place which may be

connected to each other via some sort of a relationship. A

many-to-many relationship can thus be achieved. Properties

can be assigned to each and every other node so that it

becomes easier to map data which otherwise would be

difficult. Besides, a graph database is not challenged by SQL

functionalities that may hold relational databases aback with

what they can do and how much can they do it.

2. EXISTING SYSTEMS
Although the autocomplete functionality is being provided

with the use of AJAX calls, Jquery and JavaScript functions

as far as web technology is concerned, there are various

existing ways to store and retrieve the data from the data

structures used.

A simple implementation of an array data structure can store

nodes with difeerent labels that are used to define the

parameters realted to that row. The data is indexed so that

retrieval can be based on accessing these indices. Explicitly

the search for any particular node against the term entered

involves traversing the entire data structure everytime a new

letter is typed in. Efficiency is greatly affected when the data

becomes significantly large.

Another way of doing this is by the use of Xtensible Markup

Language or XML. A tree structure to establish heirarchical

relationship. This is a better way that is being used as data

traversal doesn’t mean that the entire data structure will be

accessed. XML queries can be fired to retrieve a particular

element. Although this achieves a greater efficiency but

establishing connection between two child nodes whose

parental heirarchy is not the same is not possible.

We hereby propose the usage of graph database powered by

Neo4j technology to achieve autocomplete results.

3. PROPOSED SYSTEM

3.1 Overview
Our system encompasses of languages like HTML, CSS,

JavaScript, JQuery, AJAX, PHP, Cypher queries and Neo4j

technology for the storage of data. The user can open the web

page and find out a search bar provided.

Figure 1- The input search bar

Any input that the user makes will be subjected to couple of

JavaScript functions and be stored in a PHP variable named

‘term’. As this is going to make use of the form tag from

HTML the data will be passed to a search.php file through the

following implementation [4].

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.12, June 2016

43

Figure 2 – JavaScript function that passes the input to the

php file

The search.php file ensures the next step of establishing the

connection with our Neo4j graph database and processing the

variable ‘term’.

Neo4j enabled us to create a graph database with nodes,

establish relationships among them and assign properties to

each and every node. The data in the node gets stored in the

file named neostore.nodestore.db on the disk. Every node is

defined by its identification parameters and assigned various

other properties unique to it. These properties are stored in the

file named neostore.propertystore.db on the disk. Two nodes

share a relationship that portray the manner in which they are

connected to each other. These relationships are stored in the

file named neostore.relationshipstore.db on the disk. An

illustration of the above can be found below -

CREATE (Engg:Field {title:'Engineering', branch:'Science'})

CREATE (Comps:Department {title:'Computer Engineering',

field:'Engineering'})

CREATE (Mech:Department {title:'Mechanical Engineering',

field:'Engineering'})

CREATE (Etrx:Department {title:'Electronics Engineering',

field:'Engineering'})

CREATE (Extc:Department {title:'Electronics &

Telecommunication Engineering', field:'Engineering'})

CREATE (IT:Department {title:'Information Technology',

field:'Engineering'})

CREATE

 (Comps)-[:DEPARTMENT_IN]->(Engg),

 (Mech)-[:DEPARTMENT_IN]->(Engg),

 (Extc)-[:DEPARTMENT_IN]->(Engg),

 (Etrx)-[:DEPARTMENT_IN]->(Engg),

 (IT)-[:DEPARTMENT_IN]->(Engg)

The entire system is deployed on a server from where it will

be accessible to the users. We have used the Apache server for

demonstration purpose. All the project related files are

deployed in the htdocs folder. The protocol for

communication with the Apache server makes use of the port

number 80 whereas that needed to access Neo4j makes use of

port number 7474.

Figure 3 – The deployment diagram for the system

3.2 Algorithm
The information flow takes place form the input search bar to

the Neo4j server and back to the input search bar where the

results are displayed below it. A couple of more steps follow

as far as the algorithm to it is concerned. It is described as –

1. Start.

2. Ask the user for a text input.

3. Accept the text input and store it into a variable

('term’ in this case).

4. Pass this term to the search.php page using method

‘GET’.

5. Wrap this into a new php variable (say $term) on

search.php.

6. for every letter entered into the search bar i.e. for

every $term do

7. fire a query to match $term with the names of the

nodes present in the graph database.

8. Get the query result set and store it into another php

set variable.

9. Create new php variable (say $result) to store the

result.

10. for every row in the result set variable do

11. push the matched node name to $result.

12. End for.

13. Throw the result back on the search bar using

json_encode.

14. End for.

15. End.

3.3 Autocomplete process
Once the term is passed to the search.php file every time it is

changed i.e. for every letter that a user enters into the search

bar a Cypher query is executed that matches it with the node

names present in the Neo4j graph database using a regular

expression that ignores case sensitiveness [5, 8]. The result of

this Cypher query is then stored into a result set which

consists of rows with each row containing the matched

corresponding node.

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.12, June 2016

44

Figure 4 – Illustration of the Cypher query used to match

the input

A new array variable is the created to store the final result.

Using a for loop the node names from each of the rows

present in the result set are extracted and pushed into this

newly created array and finally the resultant array is json

encoded (JavaScript Object Notation) to display the result on

the same page where the user currently resides [5].

Figure 5 – Extracting name of the matched nodes from the

result set

3.4 Test cases
After the successful implementation of the system, it was

tested for a few unit test cases as well as system integrated test

cases.

Table 1. Unit test cases

Case

ID

Scenario Step Expected

Result

Actual Result

1 Verify

that the

search

bar can

accept an

input

Click on

the search

bar and

type in

something

The text

typed

appears

in the

search

bar

The text typed

appears in the

search bar

2 Verify

that the

search

bar

accepts

all

characters

Type in a

letter,

number or

a symbol

All

characters

should be

accepted

All characters

are accepted

3 Verify

that the

XAMPP

server is

running

Access the

web page

form a

different

IP on the

same

network

The web

page

should be

loaded in

the

browser

The web page

gets loaded in

the browser

4 Verify

that the

Neo4j

server is

running

Load the

connection

test php

file in a

browser

The

server

settings

should be

displayed

on the

browser

The server
settings are

displayed on

the web

browser

Table 2. System Integrated test cases

Cas

e ID

Scenario Step Expected

result

Actual result

5 Verify

that auto

complete

results

are

displaye

d

Type in

a

characte

r in the

search

bar

Matching

results to that

character

should be

displayed

Matching

results to that

character are

displayed

6 Verify

that the

database

can be

updated

Type in,

choose a

result

and hit

enter

The

popularity

index of the

correspondin

g node

should be

incremented

by a unit

The

popularity

index of the

correspondin

g node is

incremented

by a unit

7 Verify

that the

style

sheets

included

get

loaded

Access

the web

page in

a

browser

All the

elements

should be

properly

arranged and

oriented

The user

interface is

just as

designed

with all

elements

properly

aligned and

styled

3.5 Results
The entire system was verified for its functionalities and was

successfully deployed. The autocomplete search bar was

successfully achieved.

Figure 6 – The autocomplete search bar

4. CONCLUSION
Auto complete and predictive text has become quite necessary

in today’s digital presence. Whenever a user tries to type in

something, he/she wishes that without much effort the exact

results be displayed corresponding to what he/she wants. The

use of JQuery and AJAX have made this possible as the entire

webpage doesn’t need to load again and again each time the

user enters a character. A simple query is appended to the end

of the url and is fired simultaneously. Furthermore, provision

of self learning is also practical as the system will constantly

keep on adding new input if it were previously unavailable for

prediction. Thus the user’s history will also be taken into

consideration as a part of the auto-complete suggestions.

Along with that the use of graphical database has helped

create a more connected database with a hierarchical structure

which enables the search to be more refined and deep. Also

the use of neo4j made the entire implementation much more

easy with user friendly tutorials and smooth implementation.

Also Neo4j is easily integrated with many other platforms

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.12, June 2016

45

enables the project to work on multiple and varied platforms

without any issues. This helped us reach our conceptual and

intellectual milestone we began the development with, in the

beginning.

5. REFERENCES
[1] Hongcheng Huang, Chongqing Univ. of Posts &

Telecommun., Chongqing, China, Ziyu Dong. Research

on architecture and query performance based on

distribute graph database Neo4j. Consumer Electronics,

Communications and Networks (CECNet), 3rd

International Conference. 2013.

[2] H. Komatsu, Tokyo Inst. of Technol., Japan, S.

Takabayashi, T. Masui. Corpus-based predictive text

input. Proceedings of the 2005 International Conference

on Active Media Technology. 2005

[3] Neelu Nihalani, Comput. Applic., UIT, Bhopal, India,

Sanjay Silakari, Mahesh Motwani. Integration of

Artificial Intelligence and Database Management

System: An Inventive Approach for Intelligent

Databases. Computational Intelligence, Communication

Systems and Networks, CICSYN '09. 2009

[4] Tutorialspoint. JQueryUI – Autocomplete.

http://www.tutorialspoint.com/jqueryui/jqueryui_autoco

mplete.htm

[5] Josh Adell. Neo4jphp. Github.

https://github.com/jadell/neo4jphp

[6] C. Irniger, Dept. of Comput. Sci., Bern Univ.,

Switzerland H. Bunke. Graph database filtering using

decision trees. Pattern Recognition, ICPR, 2004.

[7] Sadhana Priyadarshini, Debahuti Mishra. An approach to

graph mining using gSpan algorithm, Computer and

Communication Technology (ICCCT), 2010.

[8] Volker Pacher, Stack Overflow. Running a case

insensitive cypher query.

http://stackoverflow.com/questions/13439278/running-a-

case-insensitive-cypher-query

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hongcheng%20Huang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.H.%20Komatsu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.S.%20Takabayashi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.S.%20Takabayashi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.S.%20Takabayashi.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Neelu%20Nihalani.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sanjay%20Silakari.QT.&newsearch=true
http://www.tutorialspoint.com/jqueryui/jqueryui_autocomplete.htm
http://www.tutorialspoint.com/jqueryui/jqueryui_autocomplete.htm
https://github.com/jadell/neo4jphp
http://stackoverflow.com/questions/13439278/running-a-case-insensitive-cypher-query
http://stackoverflow.com/questions/13439278/running-a-case-insensitive-cypher-query

