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ABSTRACT 

Secure routing in wireless ad hoc network has been an active 

area of research and in recent years, a number of secure 

routing protocols have been introduced. These solutions may 

be classified as proactive, reactive, and hybrid based on the 

routing information update mechanism deployed. Studies 

reveal that the reactive (on-demand) ones often outperform 

the others due to their ability to adjust the amount of network 

overhead created to track the mobility in the network. 

However, the existing secure on-demand routing protocols 

have also some limitations. In this paper, the weakness of 

existing popular secure reactive routing protocols is analyzed 

on the ground of topology exposure. Then a new topology-

hiding secure on-demand routing protocol, called TSOR is 

proposed based on timestamp approach and asymmetric 

cryptography. Security analysis of TSOR shows that it 

efficiently defeats all possible threats imposed by external or 

internal adversaries. Simulation results demonstrate that our 

protocol has a better capability of finding reliable and shortest 

routes in the presence of malicious nodes at the cost of low 

routing overhead.   
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1. INTRODUCTION 
Routing is a fundamental networking function for each and 

every node in a wireless ad hoc network (also known as, 

mobile ad hoc networks - MANETs), which makes it lucrative 

for attackers aiming at disabling the operation of the whole 

network.  

Attacks against MANET routing [1-3] can be classified as 

passive or active. The passive attack does not disrupt the 

normal functioning of the network instead, the attacker snoops 

the data exchanged in the network in order to extract valuable 

information. Here the requirement of confidentiality gets 

violated. Detection of passive attack is very difficult since the 

operation of the network itself is not affected. Examples of 

passive attacks include eavesdropping, traffic analysis, and 

traffic monitoring. On the other hand, an active attack 

attempts to alter or destroy the data being exchanged in the 

network and hence disrupts its normal operation. Active 

attacks may violate the security requirements of integrity, 

authenticity, availability, and non-repudiation. Active attacks 

can be internal or external. External attacks are carried out by 

nodes that do not form a part of the network whereas internal 

attacks are from compromised nodes from within the network. 

Since the attacker already belongs to the network, internal 

attacks are more severe and hard to detect than external 

attacks. Examples of active attacks include impersonation 

attack, modification attack, fabrication attack, routing loop 

formation, packet redirection, Sybil attack, DoS attack, 

rushing attack, black hole attack, wormhole attack, and gray 

hole attack. 

In recent years, a number of secure routing protocols have 

been proposed. A survey of the protocols is given in [4-7]. 

These solutions may be classified as proactive, reactive, and 

hybrid based on the underlying routing information update 

mechanism employed. It has been studied that the reactive 

(on-demand) ones often outperform the others because of their 

low network overhead.  

In this paper, we make two contributions to the area of secure 

routing in MANET. First, we thoroughly analyze the exploits 

of existing popular secure on-demand routing protocols on the 

ground of their topology exposing/hiding nature. Second, we 

detail the design of a new topology-hiding secure on-demand 

ad hoc network routing protocol, called TSOR that relies on 

timestamp approach and highly secure asymmetric 

cryptography to provide the required level of security. In 

comparison to the related previous works, TSOR is more 

secure and efficient. We analyze its robustness against 

possible security attacks imposed by external and internal 

compromised nodes. We also conduct intensive performance 

evaluation through simulation, which shows that TSOR has a 

better capability of finding reliable and shortest routes in the 

adversarial scenario. 

The rest of the paper is organized as follows. Section 2 

discusses the security exploits of the existing popular secure 

on-demand routing protocols. In Section 3, we detail the 

design of our proposed protocol TSOR. Security analysis of 

the protocol is given in Section 4. The performance evaluation 

is conducted in Section 5. Section 6 concludes this paper.  

2. RELATED WORKS 
A number of secure on-demand routing protocols have been 

proposed in near decades that are either completely new 

stand-alone protocols or in some cases incorporation of 

security mechanism into existing non-secure ones like DSR 

and AODV.  

In order to analyze the existing secure on-demand routing 

protocols in a structured way, they are classified them into 

two groups based on the packet content, particularly whether 

or not the packets (route requests and replies) carry certain 

information such as recorded routes or hop counts that expose 

the network topology. This criterion for classification is felt to 

be important, because the topology related information, 

without any firm method of confidentiality, may become 

vulnerable and can be directly used by malicious nodes to 

launch an attack. On the other hand, the absence of such 

information, as we shall see, may lead to a sub-optimal path 

or the formation of routing loops. In our classification, the 

first group consists of those protocols in which the packets 
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carries topology exposing information such as recorded routes 

or hop counts. Representative protocols include SRP [8], 

Ariadne [9], SDSR [10], and SAODV [11]. The other group 

includes protocols such as ARAN [12] and SADSR [14] in 

which the packets have no such information. The weaknesses 

of each group of protocols are examined in this section. 

2.1 Topology-Exposing Protocols 
SRP, Ariadne, and SDSR are the extensions of DSR. They 

adopt the concept of source routing. All these protocols carry 

the whole route record from source to destination in packet 

headers. SRP and Ariadne use the one-way hash chain to 

provide end-to-end integrity. They assume that a secret key is 

shared between the source and the destination. On the other 

hand, SDSR provides end-to-end integrity by applying digital 

signature, which also ensures hop-to-hop authentication. For 

key management SDSR assumes the presence of trusted 

certification authorities (CAs). Putting the whole route 

information in the packets incorporates two major problems. 

First, with only integrity and authentication checks and 

without any firm method to ensure confidentiality of the 

packet content, as these protocols do, the route information 

present in the packets exposes the network topology. This is a 

serious issue [15] because the malicious nodes can deduce a 

part or the whole network topology from the captured route 

record present in the packets and may launch many possible 

attacks, such as black hole attack, wormhole attack, and Sybil 

attack. Second, putting the complete route information in the 

packets makes the packet size larger. For a small ad hoc 

network it may not be a problem, but for a relatively large 

network where the source and destination are separated by a 

number of intermediate nodes, putting the complete route 

record within the packets increases the packet processing time 

and hence consumes more battery power of the nodes. The 

problem becomes particularly harsh in the case of SDSR 

because it uses digital signature (an asymmetric key primitive) 

that has a high computational overhead. Ariadne, Context, and 

SRP have less packet processing time in comparison to SDSR 

as they apply one-way hash chain (a symmetric key 

technique) to provide packet integrity. However, a hash chain 

doesn’t provide hop-to-hop authentication. So an intermediate 

malicious node can easily modify or fabricate the packets. 

Moreover, the shared key itself may be compromised.  

Unlike SRP, Ariadne, and SDSR, SAODV doesn’t carry route 

information in the packets. However, the packets (route 

requests and route replies) in SAODV include the hop count 

information which is used by the protocol as the routing 

metric for determining the optimal route. In order to prevent 

the manipulation of the hop count, SAODV uses hash chains. 

The basic idea is that the originator of a route request or a 

route reply sets the hop count field to 0. The max hop count 

field is set to the value of time to live field. The node then 

generates a random number and sets the hash field equal to it, 

and applies the hash function specified by the corresponding 

field max hop count times to the random number. The result is 

stored in the top hash field. The integrity of the max hop 

count and the top hash fields are preserved by digital 

signature. As the packet traverse the network, every 

intermediate node rehashes the value of the hash field (max 

hop count minus hop count times) to verify whether the result 

matches the value of the top hash field. Then, before 

forwarding the packet, the node increases the value of the hop 

count field by one and updates the hash field by rehashing its 

value once. The rationale behind proposing this hash chaining 

is that an intermediate node can verify the value of the hop 

count field but cannot compute the preceding hash values 

because of the one-way property of the hash function. This 

ensures that an adversary cannot decrease the hop count, 

thereby, cannot make a route appearing shorter than it really 

is. However, the later claim made by the authors doesn’t hold, 

because although an intermediate malicious node cannot 

decrease the hop count field, it may pass on the packet 

without increasing the value of the hop count field and 

without updating the value of the hash field. In this way, a 

compromised node can advertise the shortest route through it 

and launch a black hole attack.  

2.2 Topology-Hiding Protocols 
Two representative protocols ARAN and SADSR are 

examined. Both the protocols uses digital signature for packet 

integrity and hop-to-hop authentication. For public key 

distribution and management, the presence of trusted 

certification authorities (CAs) is assumed. A node before 

entering the network obtains an off-line certificate from a CA. 

The certificate binds the IP address of the node with its public 

key. A simple ad hoc network given in Fig. 1 where S is the 

source node and D is the destination node. ARAN works as 

follows. The source S initiates a route discovery process by 

broadcasting a signed route request packet RREQ: 

<RequestPacketId, D.IP, S.Certificate,  S.Nonce, 

TimeStamp>S.PubKey. The nonce and timestamp are used to 

prevent routing loops. The node N1, on receiving the RREQ, 

verifies the signature of S. If it is found to be valid, N1 signs 

the RREQ with its own secret key, then rebroadcasts the 

signed RREQ and its own certificate (<RREQ> N1.PubKey, 

N1.Certificate). After receiving N1’s packet, N2 verifies and 

removes N1’s signature and certificate, signs the RREQ, 

appends its own certificate and rebroadcasts the message. In 

this way, the RREQ reaches node D through N1-N2-N3-N4. 

The destination D replies to the first RREQ that it receives 

from a source and a given nonce. D creates a signed route 

reply packet RREP: <ReplyPacketId, S.IP, D.Certificate, 

S.Nonce, TimeStamp>D.PubKey and unicasts it to the source 

along the reverse path that the RREQ traverses. The 

intermediate nodes N4, N3, N2, and N1 repeat the same 

technique to verify the authenticity of the RREP that they 

have followed while forwarding the RREQ. In addition to the 

RREQ and RREP, the nodes in ARAN use signed error 

packets (ERR) to notify the source of an inactive or broken 

link. For example, in Fig.1 when N2 receives an RREQ from 

S and finds that the link N2-N3 is broken, it creates a signed 

error packet ERR: <ErrorPacketId, S.IP, D.IP, N2.Certificate, 

N2.Nonce, TimeStamp>N2.PubKey. The ERR packet is 

unicasted to the source S along the reverse path and 

authenticated by each intermediate node.  

 

Fig. 1. A simple ad hoc network with seven nodes 

It can be noticed that in ARAN none of the packets (RREQ, 

RREP, or ERR) contain a route record or a hop count 

information. Therefore, ARAN is not prone to any attack that 

the topology-exposing protocols like SRP, Ariadne, SDSR, 

and SAODV do. However, ARAN is vulnerable to some other 

serious attacks as given next. 

 In Fig. 1 lets assume that N3 is a malicious node. On 

receiving the RREP from D, N3 should unicast the RREP 
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to N2 because the path of RREQ is S-N1-N2-N3-N4-D. 

However, N3 can redirect the RREQ to N5. In such a 

situation N5 could not be aware of N3’s malicious 

intention since N3’s signature and certificate are valid. 

Finally, when the RREP reaches the source S through the 

path N4-N3-N5-N2-N1, the integrity check in the source 

becomes valid since N3 does not modify the RREP. This 

limitation of ARAN has been pointed out by the authors in 

[10]. It falsifies the claim of authors of [12] and [13] that 

ARAN guarantees a secure optimal path.  

 Let us reconsider the ad hoc network given in Fig. 1, but 

this time assume that the nodes N2, and N3 are malicious. 

These nodes don’t show any illegal behavior while 

forwarding an RREQ, for example, an RREQ initiated by 

S may reach D through the path S-N1-N2-N3-N4-D. 

However, while unicasting the RREP the malicious nodes 

may show their intention by forming a routing loop, for 

example when N2 receives an RREP from N3, instead of 

unicasting the RREP to N1, N2 sends it back to N3, which 

again forwards the RREP to N2. The nodes N2 and N3 

may continue this looping once or two times before the 

node N2 forwards the RREP to N1. The intention of the 

malicious nodes here is to make a routing delay. To the 

best of our knowledge, this weakness of ARAN has not 

been published yet. 

 A malicious node, for example, N2, or N3 may even 

launch a gray hole attack by dropping some or all 

RREP/ERR packets. It may lead to a DoS attack. 

The same attacks happen to SADSR. So the discussion is not 

given here. 

It can be observed that, the redirection and routing loop 

attacks are not possible on ARAN if either a route record or a 

hop count information is present in the RREQ or RREP, 

because, in that case, the source S compares the route record 

or the hop count information present in the RREP with that of 

the RREQ and the mismatch is caught.  

3. TSOR 
This section presents the proposed protocol Topology-hiding 

Secure On-demand Routing (TSOR). There are three 

objectives in designing TSOR: (1) topology information is 

completely hidden, so that the malicious nodes cannot deduce 

the network topology; (2) even with the necessity of hiding 

topology, TSOR can detect any possible attack, including 

those against the topology-hiding secure routing protocols that 

were discussed in the previous section; (3) Once a threat is 

detected TSOR can exclude the unreliable route (a route that 

contains one or more nodes exhibiting malicious behavior) 

before transmitting packets. To achieve these goals, TSOR 

employs the following mechanisms. In order to ensure that the 

network topology is kept hidden, none of the routing packets 

in TSOR carry either a route record or a hop count 

information. Thus, no node can deduce network topology by 

capturing the packets. For detection of attacks and exclusion 

of malicious routes, TSOR uses two techniques. First, end-to-

end integrity and hop-to-hop authentication of packets are 

enforced. This is done on the basis of the work of ARAN. 

Second, a stringent hop-to-hop verification of packet traversal 

time is imposed. A combination of these determines the 

reliability of a path. 

TSOR operates in two phases: route request phase and route 

reply phase. Before these phases are discussed in detail, we 

present our assumptions and the data structures used in TSOR.  

3.1 Assumptions and Data Structures 
TSOR uses digital signature for end-to-end integrity and hop-

to-hop authentication. We assume the presence of trusted 

Certification Authorities (CAs) for an authentic public key set 

up. A node before entering the network must obtain a 

certificate from a CA. The certificate binds the IP address of 

the node with its public key, which is used by other nodes to 

verify the packet signed by the node. In addition to this, it is 

assumed that all the nodes are tightly clock synchronized with 

a permitted error (clock difference) of . The value of the 

parameter  must be on the order of a few milliseconds, and 

must be known to all the nodes in the network. This type of 

time synchronization has been already been used in [16]. 

Tight time synchronization is necessary for accurate 

verification of packet traversal time. 

In terms of data structures, a node in TSOR maintains two 

tables. One is the route discovery table (RDT) which is used 

to store information about the route request packets (RREQ) 

processed by the node during the route request phase. An 

entry in the RDT corresponds to one RREQ processed by the 

node. The RDT contains the following fields: 

 Src: IP address of the source from which the RREQ is 

originated. 

 Dst: IP address of the final destination of the RREQ. 

 Src.TD: Departure time of the RREQ from the source. 

This time is set by the source node and is present in the 

RREQ itself.  

 TA: Arrival time of the RREQ at the current node. 

 TD: Departure time of the RREQ from the current node. 

 PrevHop: IP address of the previous hop from which the 

RREQ is received. 

The other is the routing table (RT) which is created by a 

source node S only after the route reply phase is complete and 

the source finds a route to the desired destination. The RT 

contains three fields. 

 Dst: IP address of the destination node. 

 NxtHop: IP address of the next hop through which to 

reach the destination. 

 TT: Traversal time of the RREQ. 

3.2 Working 
Now the operation of TSOR is discussed in detail. As already 

mentioned, TSOR works in two phases: route request phase 

and route reply phase. 

Route Request Phase: The route request phase is initiated by a 

source S when it needs a route to a destination D but fails to 

find a route in its routing table (there is no entry for D in the 

routing table of S). In this case, the source S creates a route 

request packet (RREQ) which contains the following fields: 

 REQ: Request packet type identifier. 

 S: IP address of the source S. 

 D: IP address of the destination D. 

 S.TD: Departure time of the RREQ from S. 

 S.Cert: Certificate of S. 

The tuple <S, D, Src.TD> uniquely identifies an RREQ. S then 

signs the RREQ using its private key (S.PriKey) and 

broadcasts the packet. However, before broadcasting, S inserts 

a new entry in its route discovery table (RDT) for this RREQ 

and also sets a timer. If the source S doesn’t receive a route 
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reply packet (RREP) from the destination D before the timer 

expires, it reinitiates a route request phase. A route request 

phase is also reinitiated by the source if it receives an RREP 

within the timer expires but finds that the security of the 

RREP has been compromised (the RREP has reached S 

through a malicious path). The source S can make up to ƞ 

route request attempts (ƞ is application dependent). The value 

of the timer is dynamic and normally based on the round-trip-

time.  

Every intermediate node on receiving the RREQ, first verify 

the previous nodes’ signature using the previous nodes’ public 

keys found in their respective certificates. The intermediate 

nodes then examine the uniqueness of the RREQ by checking 

the tuple <S, D, S.TD> in their RDTs. If the RREQ is found to 

be authentic and unique (the first one), the intermediate nodes 

remove the previous nodes’ signature (if the intermediate 

nodes are not the immediate neighbors of the source S), sign 

the RREQ, append their own certificates, insert an entry in 

their RDT for this RREQ, and rebroadcast it. Instead, the 

RREQ is rejected. 

Eventually, the RREQ reaches the destination D. The first 

action taken by D upon receiving the RREQ is to examine the 

authenticity of the packet by verifying the signatures of its 

previous hop as well as the signature of the source S. If one of 

the signatures is found invalid, the RREQ is rejected. On the 

other hand, if both the signatures are valid, the destination D 

checks the tuple <S, D, S.TD> in its RDT to determine 

whether this is the first RREQ for this route request attempt 

(recall that, a source can make up to three route request 

attempts). There may be three cases. 

 Case 1: The tuple <S, D, S.TD> completely matches with 

an earlier entry in the RDT of D. It means that the current 

RREQ is a duplicate copy of an already processed RREQ 

of the recent route request attempts made by the source. 

So the current RREQ is rejected. 

 Case 2: Only the tuple <S, D> matches with an earlier 

entry in the RDT, but S.TD is different. It means that the 

current RREQ is the first route request packet of another 

(2nd and onwards) route request attempt made by the 

source. An earlier attempt has already been made by the 

source for which an RREP has been sent to the destination 

D. However, the RREP has been rejected by the source 

because the packet has reached the source S through a 

malicious route. In such case, it becomes necessary for the 

destination D to determine whether the current RREQ has 

reached D through the same malicious route through 

which the earlier RREP (the rejected one) has reached the 

source S. To know this, D compares the traversal time (TT 

= RREQ’s arrival time - S.TD) of the current RREQ with 

the traversal time of that entry in the RDT whose <Src, 

Dst> matches the tuple <S, D> of the current RREQ. If the 

traversal time of that entry (TA - Src.TD) is found to be 

within the range TT±, it implies that the RREQ has 

reached the destination D through the same malicious 

path. Hence, the current RREQ is rejected. Instead, the 

destination accepts the RREQ, deletes the earlier entry in 

the RDT whose <Src, Dst> matches the tuple <S, D> of 

the current RREQ, inserts a new entry in the RDT for this 

RREQ and initiates a route reply phase. 

 Case 3: The tuple <S, D, S.TD> doesn’t match with an 

earlier entry in the RDT. It means that the current RREQ 

is the first route request packet of the first route request 

attempt made by the source. Therefore, the destination D 

accepts this RREQ, inserts a new entry in its RDT for this 

RREQ and initiates a route reply phase.  

Route Reply Phase: The route reply phase is initiated by the 

destination D in response to its acceptance of an RREQ sent 

by the source S. In this phase the destination D creates a route 

reply packet (RREP) which has the following fields: 

 REP: Reply packet type identifier. 

 D: IP address of the RREP’s source. 

 S: IP address of the RREP’s destination. 

 S.TD: Departure time of the RREQ from the source 

S against which this RREP is generated 

 TA: Arrival time of the RREQ at D against which 

this RREP is generated. 

 D.TD: Departure time of the RREP from D. 

 D.Cert: Certificate of D.  

D then signs the RREP using its private key (D.PriKey) and 

unicasts the packet through the reverse route (a reverse route 

is automatically set because every intermediate node before 

forwarding an RREQ during the route request phase set the 

PrevHop field in their route discovery table). 

When an intermediate node along the reverse path receives the 

RREP, it verifies the signature of the node from which it 

receives the RREP. If it is found invalid the packet is rejected. 

Instead, the intermediate node compares the RREP’s traversal 

time from the destination to the node (RREP’s arrival time - 

D.TD) with the traversal time of the RREQ from the node to 

the destination against which this RREP is generated (TA - 

TD). D.TD and TD are present in the RREP itself, whereas TA 

can be obtained from the route discovery table (RDT) of the 

intermediate node by comparing the RREP’s tuple <D, S, 

S.TD> with the RDT’s entries. If there is a difference of more 

than  it means that, either a packet redirection attack or a 

routing loop attack has occurred on the RREP. Hence, the 

intermediate node drops the RREP. This approach has the 

advantage that the other nodes along the reverse path from the 

current node up to and including the source node don’t have 

to unnecessarily process a compromised RREP. On the other 

hand, if the traversal times of the RREP and the 

corresponding RREQ have a difference of less than or equal 

to , the intermediate node considers the RREP as a valid one. 

So, the intermediate node removes the signature of the node 

from which it has received the RREP (if the intermediate node 

is not the immediate neighbor of D), signs the RREP, appends 

its own certificate, and unicasts the RREP to the next node in 

the reverse path. However, before unicasting the RREP, the 

intermediate node deletes the corresponding RREQ entry 

from its RDT. 

Finally, the RREP reaches the source node S. The source S, 

on receiving the RREP, first verifies the signatures of the 

node from which it receives the RREP as well as the signature 

of the destination D. The source S, then compares the 

traversal time of the RREP with that of the corresponding 

RREQ in the similar manner as the intermediate nodes do. If 

everything is fine the source accepts the RREP, deletes the 

respective RREQ entry in its RDT, and makes a new entry in 

its RT (Dst = D, NxtHop = The node form which S has 

received the RREP). Otherwise, the RREP is rejected and the 

source S reinitiates an RREQ phase.  

The detailed protocol is given in Algorithm 1. 
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Algorithm 1: /* The procedures TsorSource (S, D), TsorDestination 

(S, D), and TsorNode (S, D, X) are respectively executed by the 

source S, the destination D, and an arbitrary intermediate node X. */ 

(1) TsorSource (S, D) 

attempt = 0 ; /* Initialize the number of attempts*/ 

timer = t; /* Initialize the timer */ 

RouteRequest (S, D); /* Procedure call */ 

attempt = attempt +1;  

start timer; /* Decrement the timer with each clock pulse*/ 

while (attempt <= ƞ) do 

if (timer == 0) then /*Reinitiate route request*/ 

timer = t; 

RouteRequest (S, D);  

attempt = attempt +1; start timer;  

else  

if (type of received packet == RREP) then 

if (verifyNodeSign (RREP) and  

verifyDstSign (RREP)) then 

/*Verify the signature of the node from which the 

RREP is received as well as the signature of the 

destination*/ 

TT = RREP’s arrival time - RREP[D.TD]; 

RDT.R[TD] = TD of that entry in RDT whose 

<Src, Dst, Src.TD> is same as RREP’s <D, S, 

Src.TD >; 

t = RREP[TA] - RDT.R[TD]; 

if ((TT - ) <= t <= (TT + )) then  

/* Accept the RREP */ 

delete (RDT entry having RDT[Src] == S 

and RDT[Dst] == D); 

/* Insert an entry in the RT */ 

RT[Dst] = D;  

RT[NxtHop] = IP address of the node from 

which the RREP is received;  

RT[TT] = TT; 

end if 

else 

reject (RREP); 

end if 

end if 

end if 

end while 

(2) RouteRequest (S, D) 

/* Create a RREQ */ 

S.Sign = <REQ, S, D, S.TD, S.Cert>S.PriKey; 

RREQ = <<REQ, S, D, S.TD, S.Cert>, S.Sign>; 

delete (RDT entry having RDT[Src] == S and RDT[Dst] == D ); 

/* Clear RDT and insert an entry in the RDT for this RREQ */ 

RDT[Src] = S; RDT[Dst] = D; 

RDT[Src.TD] = CurrentTime; RDT[TA] = NULL; 

RDT[TD] = CurrentTime; RDT[PrvHop] = NULL; 

broadcast (RREQ); /* Broadcast the RREQ */ 

(3) TsorDestination (S, D) 

if (verifyNodeSign (RREQ) and verifySrcSign (RREQ)) then 

/*Verify the signature of the node from which the RREQ is 

received as well as signature of source. */ 

if (there exists an entry in RTD such that the tuple 

<RREQ[S], RREQ[D], RREQ[S.TD]> == the tuple 

<RDT[Src], RTD[Dst], TD[Src.TD]>) then 

reject (RREQ); /* Duplicate RREQ */ 

end if 

if (there exists an entry in RTD such that the tuple 

<RREQ[S], RREQ[D]> == the tuple <RDT[Src], 

RTD[Dst]>) then /* 2nd and onwards route request attempt */ 

TT = RREQ’s arrival time - RREQ[S.TD]; 

RDT.R[TA] = TA of that entry in RDT whose <Src, Dst> 

is same as RREQ’s <S, D>; 

RDT.R[Src.TD] = Src.TD of that entry in RDT whose 

<Src, Dst> is same as RREQ’s <S, D>; 

t = RDT.R[TA] - RDT.R[Src.TD]; 

if ((TT - ) <= t <= (TT + )) then  

/* RREQ reached through a malicious path */ 

reject (RREQ);  

else /* Accept the RREQ */ 

delete (RDT entry having RDT[Src] == S and 

RDT[Dst] == D); 

/*Insert an entry in RDT for the RREQ*/ 

RDT[Src] = S; RDT[Dst] = D; 

RDT[Src.TD] = RREQ[S.TD];  

RDT[TA] = RREQ’s arrival time; 

RDT[TD] = CurrentTime; 

RDT[PrvHop] = The node from which the RREQ is 

received; 

RouteReply (RDT[Dst], RDT[Src], DT[PrvHop]);  

end if 

end if 

if (for all entries in RTD the tuple <RREQ[S], RREQ[D], 

RREQ[S.TD]> != the tuple <RDT[Src], RTD[Dst], 

RTD[Src.TD]>) then 

/* 1st route request attempt, Accept the RREQ */ 

/* Insert an entry in RDT for this RREQ */ 

RDT[Src] = S; RDT[Dst] = D; 

RDT[Src.TD] = RREQ[S.TD];  

RDT[TA] = RREQ’s arrival time; 

RDT[TD] = CurrentTime; 

RDT[PrvHop] = The node from which the RREQ is 

received; 

RouteReply (D, S, RDT[PrvHop]);  

end if 

else /* Invalid signatures */ 

reject (RREQ); 

end if 

(4) RouteReply (D, S, RDT[PrvHop]) 

/* Create a RREP */ 

D.Sign = <REP, D, S, S.TD, TA, D.TD, D.Cert>D.PriKey; 

RREP = <<REP, D, S, S.TD, TA, D.TD, D.Cert>, D.Sign>; 

unicast (RDT[PrvHop], RREP); /*Unicast RREP*/ 

 

(5) TsorNode (S, D, X) 

if (type of received packet == RREQ) then 

if (verifyNodeSign (RREQ) and  

verifyUnique (RREQ)) then /*Verify the signature of the 

node from which the RREQ is received, and also the 

uniqueness of the RREQ by comparing the RREQ’s tuple <S, 

D, S.TD> with the RDT’s tuple <Src, Dst, Src.TD >*/ 

removePrevSign (RREQ);  

/* Remove previous node’s sign if it is not the source */ 

X.Sign = <RREQ>X.PriKey; 

RREQ = <<RREQ>, X.Sign, X.Cert>; 

/* Insert an entry in RDT for this RREQ */ 

RDT[Src] = S; RDT[Dst] = D; 

RDT[Src.TD] = RDT[S.TD]; 

RDT[TA] = Arrival time of the RREQ; 

RDT[TD] = CurrentTime; 

RDT[PrvHop] = the node from which the RREQ is 

received; 

broadcast (RREQ); /* Broadcast RREQ */ 

else 

reject (RREQ); 

end if 

end if 

if (type of received packet == RREP) then 

if (verifyNodeSign (RREP)) then 

TT = RREP’s arrival time - RREP[D.TD]; 

RDT.R[TD] = TD of that entry in RDT whose <Src, Dst, 

Src.TD> is same as RREP’s <D, S, Src.TD >; 

t = RREP[TA] - RDT.R[TD]; 

if ((TT - ) <= t <= (TT + )) then 

removePrevSign (RREQ);  

X.Sign = <RREQ>X.PriKey; 

RREQ = <<RREQ>, X.Sign, X.Cert>; 

delete (RDT entry having RDT[Src] == S and 

RDT[Dst] == D); 

unicast (RDT[PrvHop], RREP);  

end if 

else 
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reject (RREP); 

end if 

end if 

 

 

4. SECURITY ANALYSIS 
The combination of techniques deployed in TSOR makes it 

resilient against all possible damages incurred by malicious 

nodes either internal or external to the network. We first 

discuss the robustness of TSOR in resisting the following 

major attacks that could be effectively launched against a 

secure on-demand routing protocol from a random position in 

the network. 

 Impersonation attack: In TSOR every node is required to 

authenticate its neighbor during both route request and 

route reply phases. Only those packets are accepted that 

are signed with a certified key issued by a CA. Therefore, 

it is impossible for an external or an internal compromised 

node to impersonate any other node. 

 Modification attack: Since all packets are signed by the 

initiating nodes (RREQ is signed by the source and RREP 

is signed by the destination), any alterations in transit are 

immediately detected and the altered packet is 

subsequently discarded. 

 Fabrication attack: Fabrication attack is prevented, 

because in TSOR no intermediate node is allowed to 

generate a routing packet. 

 Black hole attack: In TSOR, the intermediate nodes are 

not allowed to confirm or disconfirm the availability or 

reliability of a route either directly by sending a packet to 

the source or indirectly by modifying the packet content 

(such as modifying the hop count field as in the case of 

SAODV). Only the source and the destination has the 

capacity to choose a reliable path. So the chance of a black 

hole attack is eliminated. 

 Wormhole attack: TSOR can resist wormhole attack 

because (1) it is topology hiding and hence it is impossible 

for attackers to choose central positions in the network to 

launch the attack and (2) neither it uses hop count as a 

routing metric nor it allows an intermediate node to 

modify the packet content. 

 Sybil attack: TSOR does not include identity nor topology 

information in the routing packets, and thus it is 

impossible for malicious nodes to obtain the identity 

information of other nodes. Therefore, TSOR is resistant 

to Sybil attack. 
 

Next, we examine TSOR against the packet redirection attack, 

the routing loop attack, and the packet drop attack as 

presented in Section 2, which the existing topology-hiding 

protocols fail to defy. We consider the ad hoc network given 

in Fig. 1 for our discussion. 

 Packet redirection attack: Let us assume that the RREQ 

which is accepted by the destination D has reached D 

through the path S-N1-N2-N3-N4-D. Suppose node N3 is 

malicious. During the route reply phase, when D unicasts 

the RREP through the reverse path, node N3 launches a 

packet redirection attack by unicasting the RREP to N5 

instead of unicasting it to N2. This attack is immediately 

caught by the node N2 when it receives the packet from 

N5, because when N2 compares the traversal times of this 

RREP with that of the RREQ, it finds a difference of more 

than the permitted error . If the packet transmission delay 

between any two nodes is taken to be Ω and node’s packet 

processing time to be µ, then the traversal time of the 

RREQ from N2 to D is 3Ω+2µ, whereas the traversal time 

of RREP from D to N2 through N5 is 4Ω+3µ. So the 

difference is Ω+µ. In such case, N2 rejects the RREP. 

When the source S doesn’t receive an RREP within the 

time out it reinitiates the route request phase. However, 

this time, the destination D accepts the first RREQ which 

reaches D trough a different path. Therefore, the malicious 

path (that contains N3) is automatically excluded.  

 Routing loop attack: Let us consider that the nodes N2, 

and N3 are malicious. They launch a routing loop attack in 

the route reply phase as follows. When N2 receives the 

RREP from N3, it sends the packet back to N3, which 

again forwards it to N2. This type of attack is also easily 

detected in TSOR, because when N1 receives the RREP 

from N2 (after few loops) and compares the traversal 

times of this RREP with that of the RREQ, it finds a 

difference of more than the permitted error  (each loop 

takes 3Ω+3µ time) and the RREP is subsequently 

discarded by N2. 

 Packet drop attack: The packet drop attack is prevented 

because when an RREP is dropped by some intermediate 

node, the source doesn’t receive an RREP within the timer 

expires.  Hence, it reinitiates the route request phase. But 

this time, the destination doesn’t accept the RREQ which 

has traversed through the same malicious path that the 

earlier RREQ does. So, automatically the malicious node 

is excluded. 

5. PERFORMANCE EVALUATION 

5.1 Simulation Methodology 
The performance TSOR was evaluated using the NS2 network 

simulator [17]. TSOR is compared with ARAN with and 

without the packet redirection and routing loop attacks. As 

discussed in Section 2.2, though ARAN is a topology hiding 

protocol, it is prone to these attacks. Both protocols were 

simulated using a 512 bit key and 16-byte digital signature. 

We used 802.11 MAC layer and CBR traffic over UDP. Node 

movement was simulated according to the random waypoint 

mobility model [18]. Ten CBR sessions were simulated in 

each run, with random source and destination pairs. Each 

session generated 1000 packets. A random delay between 0 to 

10 ms was introduced before a packet is broadcasted in order 

to minimize collisions. Other parameters are listed in Table 1. 

Following performance matrices are evaluated for a non-

adversarial scenario when there were no malicious nodes.  

 Average packet delivery fraction: It is the average ratio of 

packets received by the destination to the packets 

generated by the source. It evaluates the ability of the 

protocol to discover routes. 

 Average routing load in packets: It is the average ratio of 

control packets overhead to data packets. 

 Average path length: It is the average length of the paths 

discovered by the protocol. It was calculated by averaging 

the number of hops taken by each received packet.  

 Average route acquisition latency: It is the average delay 

between the sending of an RREQ by a source to a 

destination and the receipt of the first corresponding 

RREP by the source. 

In order to examine how TSOR performs against ARAN in an 

adversarial scenario when the malicious nodes were executing 

packet redirection and routing loop attacks, the matrices 

average path length and average route acquisition latency are 

evaluated, as discussed above, against each attack. These two 

matrices were considered important under adversarial setting 
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because they respectively indicate the extent of path 

elongation and delay in ARAN under the packet redirection 

and routing loop attacks. Longer routes result in greater 

routing overhead and longer delays. 

Table 1. Simulation parameters. 

 

Parameters Values 

Simulation area 1000 m × 1000 m 

Channel capacity 2 Mb/s 

Number of mobile nodes 50 

Node transmission range 250 m 

Node movement speed 0, 1, 5, 10 m/s 

Pause time between movements 30 s 

Packet generation rate 4 packets/s 

Packet size 512 bytes 

Packet processing delay (including 

signature generation and 

verification times) 

8 ms (5.5 ms for signature 

generation, 0.5 ms for 

signature verification, 2 ms 

for normal processing) 

Number of attackers 0-10 

 

5.2 Simulation Results 
Fig. 2-5 and Fig. 6-7 show the observed results under non-

adversarial and adversarial scenarios, respectively. Each data 

point in the resulting graphs is an average of ten simulation 

runs with homogeneous configuration but different randomly 

generated mobility patterns. 

As shown in Fig. 2-5, the performance of TSOR is almost 

identical to that of ARAN in the absence of attackers.  

 From Fig. 2, the average packet delivery fraction 

decreases as the node speed increases. Both the protocols 

keep it above 97%. 

 From Fig. 3, there is a steady increase in average routing 

load with the increase in node mobility. Compared to 

ARAN, TSOR has a very similar routing overhead. 

 From Fig. 4, the average path length for both protocols is 

relatively stable between 3 to 4 hops. 

 From Fig. 5, both ARAN and TSOR have the average 

route acquisition latency in the range of [90 ms, 125 ms]. 

Also, this metric keeps relative stable. 
 

These simulation results above show that TSOR does not 

degrade the performance and achieves a very similar 

performance as that of ARAN in the scenario where there are 

no attackers. 
 

Next, the performances of TSOR and ARAN are analyzed 

with respect to average path length and average route 

acquisition latency in the adversarial scenario when there are 

malicious nodes performing packet redirection and routing 

loop attacks. Fig. 6 and 7 compare TSOR with ARAN under 

packet redirection and routing loop attacks, respectively. Each 

data point in the graph reflects the scenario under different 

numbers of malicious nodes ranging from 2 to 10. The nodes 

speeds are averaged. As it can be observed, ARAN is greatly 

affected by these attacks. 
 

 Fig. 6 shows that the average path length of ARAN is 

very high under the attacks. For instance, in the presence 

of routing loop attack when the number of attackers 

increases to 10, the average path length ARAN becomes 

two times as that of TSOR. However, these attacks have 

a very little impact on TSOR. The average path length in 

TSOR keeps stable in the range of 3 to 4 hops under each 

attack even there are 10 attackers. The results show that 

TSOR can resist packet redirection and routing loop 

attacks effectively. This is because TSOR can exclude 

the unreliable routes in the route reply phase before 

transmitting packets. 

 Fig. 7 depicts that, the average route acquisition latency 

in TSOR is not affected by the attacks. It maintains a 

stable value that matches the non-adversarial scenario. 

However, ARAN suffers a lot. With the packet 

redirection attack and routing loop attack, when the 

number of attackers is up to 10, the route acquisition 

latency increase to  32% and 44%, respectively as 

compared to TSOR. 

These results clearly show that TSOR provides better security 

in terms of finding reliable and shortest routes when 

compared with ARAN under the simulated attack models. 

  

Fig. 2. Average packet delivery fraction 

 

Fig. 3. Average routing load in packets 

 

Fig. 4. Average path length 



International Journal of Computer Applications (0975 – 8887) 

Volume 144 – No.4, June 2016 

49 

 

Fig. 5. Average route acquisition latency 

 

Fig. 6. Average path length under packet redirection and 

routing loop attack 

 

Fig. 7. Average route acquisition latency under packet 

redirection and routing loop attacks 

6. CONCLUSION  
In this paper, the design and analysis of a new secure on-

demand routing protocol for MANET called Topology-hiding 

Secure On-demand Routing (TSOR) are presented. The 

protocol is based on the philosophy of topology hiding. The 

design of TSOR carefully fits the digital signature mechanism 

over a stringent hop-to-hop verification of packet traversal 

time in order to create an efficient and practical protocol that 

is robust against multiple active attacks. TSOR successfully 

archives all the security goals like packet integrity, 

authentication, availability, and non-repudiation. Performance 

evaluation shows that TSOR has a better capability of finding 

reliable and shortest under an adversarial scenario in 

comparison to the existing topology hiding on-demand secure 

routing protocols. However, TSOR does not degrade the 

performance when there is no attack. Together with existing 

approaches for securing the physical layer and MAC layer 

within the network protocol stack, TSOR provides a better 

approach for the secure operation of an ad hoc network. 
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