
International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.4, June 2016

42

A Topology-Hiding Secure On-Demand Routing Protocol

for Wireless Ad Hoc Network

Niroj Kumar Pani
Department of

Computer Science Engineering
& Application

IGIT, Sarang, India

Bikram Keshari Rath
Department of

Computer Science
Utkal University

Bhubaneswar, India

Sarojananda Mishra
Department of

Computer Science Engineering
& Application

IGIT, Sarang, India

ABSTRACT

Secure routing in wireless ad hoc network has been an active

area of research and in recent years, a number of secure

routing protocols have been introduced. These solutions may

be classified as proactive, reactive, and hybrid based on the

routing information update mechanism deployed. Studies

reveal that the reactive (on-demand) ones often outperform

the others due to their ability to adjust the amount of network

overhead created to track the mobility in the network.

However, the existing secure on-demand routing protocols

have also some limitations. In this paper, the weakness of

existing popular secure reactive routing protocols is analyzed

on the ground of topology exposure. Then a new topology-

hiding secure on-demand routing protocol, called TSOR is

proposed based on timestamp approach and asymmetric

cryptography. Security analysis of TSOR shows that it

efficiently defeats all possible threats imposed by external or

internal adversaries. Simulation results demonstrate that our

protocol has a better capability of finding reliable and shortest

routes in the presence of malicious nodes at the cost of low

routing overhead.

Keywords

Ad-hoc networks, Security attacks, Secure routing.

1. INTRODUCTION
Routing is a fundamental networking function for each and

every node in a wireless ad hoc network (also known as,

mobile ad hoc networks - MANETs), which makes it lucrative

for attackers aiming at disabling the operation of the whole

network.

Attacks against MANET routing [1-3] can be classified as

passive or active. The passive attack does not disrupt the

normal functioning of the network instead, the attacker snoops

the data exchanged in the network in order to extract valuable

information. Here the requirement of confidentiality gets

violated. Detection of passive attack is very difficult since the

operation of the network itself is not affected. Examples of

passive attacks include eavesdropping, traffic analysis, and

traffic monitoring. On the other hand, an active attack

attempts to alter or destroy the data being exchanged in the

network and hence disrupts its normal operation. Active

attacks may violate the security requirements of integrity,

authenticity, availability, and non-repudiation. Active attacks

can be internal or external. External attacks are carried out by

nodes that do not form a part of the network whereas internal

attacks are from compromised nodes from within the network.

Since the attacker already belongs to the network, internal

attacks are more severe and hard to detect than external

attacks. Examples of active attacks include impersonation

attack, modification attack, fabrication attack, routing loop

formation, packet redirection, Sybil attack, DoS attack,

rushing attack, black hole attack, wormhole attack, and gray

hole attack.

In recent years, a number of secure routing protocols have

been proposed. A survey of the protocols is given in [4-7].

These solutions may be classified as proactive, reactive, and

hybrid based on the underlying routing information update

mechanism employed. It has been studied that the reactive

(on-demand) ones often outperform the others because of their

low network overhead.

In this paper, we make two contributions to the area of secure

routing in MANET. First, we thoroughly analyze the exploits

of existing popular secure on-demand routing protocols on the

ground of their topology exposing/hiding nature. Second, we

detail the design of a new topology-hiding secure on-demand

ad hoc network routing protocol, called TSOR that relies on

timestamp approach and highly secure asymmetric

cryptography to provide the required level of security. In

comparison to the related previous works, TSOR is more

secure and efficient. We analyze its robustness against

possible security attacks imposed by external and internal

compromised nodes. We also conduct intensive performance

evaluation through simulation, which shows that TSOR has a

better capability of finding reliable and shortest routes in the

adversarial scenario.

The rest of the paper is organized as follows. Section 2

discusses the security exploits of the existing popular secure

on-demand routing protocols. In Section 3, we detail the

design of our proposed protocol TSOR. Security analysis of

the protocol is given in Section 4. The performance evaluation

is conducted in Section 5. Section 6 concludes this paper.

2. RELATED WORKS
A number of secure on-demand routing protocols have been

proposed in near decades that are either completely new

stand-alone protocols or in some cases incorporation of

security mechanism into existing non-secure ones like DSR

and AODV.

In order to analyze the existing secure on-demand routing

protocols in a structured way, they are classified them into

two groups based on the packet content, particularly whether

or not the packets (route requests and replies) carry certain

information such as recorded routes or hop counts that expose

the network topology. This criterion for classification is felt to

be important, because the topology related information,

without any firm method of confidentiality, may become

vulnerable and can be directly used by malicious nodes to

launch an attack. On the other hand, the absence of such

information, as we shall see, may lead to a sub-optimal path

or the formation of routing loops. In our classification, the

first group consists of those protocols in which the packets

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.4, June 2016

43

carries topology exposing information such as recorded routes

or hop counts. Representative protocols include SRP [8],

Ariadne [9], SDSR [10], and SAODV [11]. The other group

includes protocols such as ARAN [12] and SADSR [14] in

which the packets have no such information. The weaknesses

of each group of protocols are examined in this section.

2.1 Topology-Exposing Protocols
SRP, Ariadne, and SDSR are the extensions of DSR. They

adopt the concept of source routing. All these protocols carry

the whole route record from source to destination in packet

headers. SRP and Ariadne use the one-way hash chain to

provide end-to-end integrity. They assume that a secret key is

shared between the source and the destination. On the other

hand, SDSR provides end-to-end integrity by applying digital

signature, which also ensures hop-to-hop authentication. For

key management SDSR assumes the presence of trusted

certification authorities (CAs). Putting the whole route

information in the packets incorporates two major problems.

First, with only integrity and authentication checks and

without any firm method to ensure confidentiality of the

packet content, as these protocols do, the route information

present in the packets exposes the network topology. This is a

serious issue [15] because the malicious nodes can deduce a

part or the whole network topology from the captured route

record present in the packets and may launch many possible

attacks, such as black hole attack, wormhole attack, and Sybil

attack. Second, putting the complete route information in the

packets makes the packet size larger. For a small ad hoc

network it may not be a problem, but for a relatively large

network where the source and destination are separated by a

number of intermediate nodes, putting the complete route

record within the packets increases the packet processing time

and hence consumes more battery power of the nodes. The

problem becomes particularly harsh in the case of SDSR

because it uses digital signature (an asymmetric key primitive)

that has a high computational overhead. Ariadne, Context, and

SRP have less packet processing time in comparison to SDSR

as they apply one-way hash chain (a symmetric key

technique) to provide packet integrity. However, a hash chain

doesn’t provide hop-to-hop authentication. So an intermediate

malicious node can easily modify or fabricate the packets.

Moreover, the shared key itself may be compromised.

Unlike SRP, Ariadne, and SDSR, SAODV doesn’t carry route

information in the packets. However, the packets (route

requests and route replies) in SAODV include the hop count

information which is used by the protocol as the routing

metric for determining the optimal route. In order to prevent

the manipulation of the hop count, SAODV uses hash chains.

The basic idea is that the originator of a route request or a

route reply sets the hop count field to 0. The max hop count

field is set to the value of time to live field. The node then

generates a random number and sets the hash field equal to it,

and applies the hash function specified by the corresponding

field max hop count times to the random number. The result is

stored in the top hash field. The integrity of the max hop

count and the top hash fields are preserved by digital

signature. As the packet traverse the network, every

intermediate node rehashes the value of the hash field (max

hop count minus hop count times) to verify whether the result

matches the value of the top hash field. Then, before

forwarding the packet, the node increases the value of the hop

count field by one and updates the hash field by rehashing its

value once. The rationale behind proposing this hash chaining

is that an intermediate node can verify the value of the hop

count field but cannot compute the preceding hash values

because of the one-way property of the hash function. This

ensures that an adversary cannot decrease the hop count,

thereby, cannot make a route appearing shorter than it really

is. However, the later claim made by the authors doesn’t hold,

because although an intermediate malicious node cannot

decrease the hop count field, it may pass on the packet

without increasing the value of the hop count field and

without updating the value of the hash field. In this way, a

compromised node can advertise the shortest route through it

and launch a black hole attack.

2.2 Topology-Hiding Protocols
Two representative protocols ARAN and SADSR are

examined. Both the protocols uses digital signature for packet

integrity and hop-to-hop authentication. For public key

distribution and management, the presence of trusted

certification authorities (CAs) is assumed. A node before

entering the network obtains an off-line certificate from a CA.

The certificate binds the IP address of the node with its public

key. A simple ad hoc network given in Fig. 1 where S is the

source node and D is the destination node. ARAN works as

follows. The source S initiates a route discovery process by

broadcasting a signed route request packet RREQ:

<RequestPacketId, D.IP, S.Certificate, S.Nonce,

TimeStamp>S.PubKey. The nonce and timestamp are used to

prevent routing loops. The node N1, on receiving the RREQ,

verifies the signature of S. If it is found to be valid, N1 signs

the RREQ with its own secret key, then rebroadcasts the

signed RREQ and its own certificate (<RREQ> N1.PubKey,

N1.Certificate). After receiving N1’s packet, N2 verifies and

removes N1’s signature and certificate, signs the RREQ,

appends its own certificate and rebroadcasts the message. In

this way, the RREQ reaches node D through N1-N2-N3-N4.

The destination D replies to the first RREQ that it receives

from a source and a given nonce. D creates a signed route

reply packet RREP: <ReplyPacketId, S.IP, D.Certificate,

S.Nonce, TimeStamp>D.PubKey and unicasts it to the source

along the reverse path that the RREQ traverses. The

intermediate nodes N4, N3, N2, and N1 repeat the same

technique to verify the authenticity of the RREP that they

have followed while forwarding the RREQ. In addition to the

RREQ and RREP, the nodes in ARAN use signed error

packets (ERR) to notify the source of an inactive or broken

link. For example, in Fig.1 when N2 receives an RREQ from

S and finds that the link N2-N3 is broken, it creates a signed

error packet ERR: <ErrorPacketId, S.IP, D.IP, N2.Certificate,

N2.Nonce, TimeStamp>N2.PubKey. The ERR packet is

unicasted to the source S along the reverse path and

authenticated by each intermediate node.

Fig. 1. A simple ad hoc network with seven nodes

It can be noticed that in ARAN none of the packets (RREQ,

RREP, or ERR) contain a route record or a hop count

information. Therefore, ARAN is not prone to any attack that

the topology-exposing protocols like SRP, Ariadne, SDSR,

and SAODV do. However, ARAN is vulnerable to some other

serious attacks as given next.

 In Fig. 1 lets assume that N3 is a malicious node. On

receiving the RREP from D, N3 should unicast the RREP

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.4, June 2016

44

to N2 because the path of RREQ is S-N1-N2-N3-N4-D.

However, N3 can redirect the RREQ to N5. In such a

situation N5 could not be aware of N3’s malicious

intention since N3’s signature and certificate are valid.

Finally, when the RREP reaches the source S through the

path N4-N3-N5-N2-N1, the integrity check in the source

becomes valid since N3 does not modify the RREP. This

limitation of ARAN has been pointed out by the authors in

[10]. It falsifies the claim of authors of [12] and [13] that

ARAN guarantees a secure optimal path.

 Let us reconsider the ad hoc network given in Fig. 1, but

this time assume that the nodes N2, and N3 are malicious.

These nodes don’t show any illegal behavior while

forwarding an RREQ, for example, an RREQ initiated by

S may reach D through the path S-N1-N2-N3-N4-D.

However, while unicasting the RREP the malicious nodes

may show their intention by forming a routing loop, for

example when N2 receives an RREP from N3, instead of

unicasting the RREP to N1, N2 sends it back to N3, which

again forwards the RREP to N2. The nodes N2 and N3

may continue this looping once or two times before the

node N2 forwards the RREP to N1. The intention of the

malicious nodes here is to make a routing delay. To the

best of our knowledge, this weakness of ARAN has not

been published yet.

 A malicious node, for example, N2, or N3 may even

launch a gray hole attack by dropping some or all

RREP/ERR packets. It may lead to a DoS attack.

The same attacks happen to SADSR. So the discussion is not

given here.

It can be observed that, the redirection and routing loop

attacks are not possible on ARAN if either a route record or a

hop count information is present in the RREQ or RREP,

because, in that case, the source S compares the route record

or the hop count information present in the RREP with that of

the RREQ and the mismatch is caught.

3. TSOR
This section presents the proposed protocol Topology-hiding

Secure On-demand Routing (TSOR). There are three

objectives in designing TSOR: (1) topology information is

completely hidden, so that the malicious nodes cannot deduce

the network topology; (2) even with the necessity of hiding

topology, TSOR can detect any possible attack, including

those against the topology-hiding secure routing protocols that

were discussed in the previous section; (3) Once a threat is

detected TSOR can exclude the unreliable route (a route that

contains one or more nodes exhibiting malicious behavior)

before transmitting packets. To achieve these goals, TSOR

employs the following mechanisms. In order to ensure that the

network topology is kept hidden, none of the routing packets

in TSOR carry either a route record or a hop count

information. Thus, no node can deduce network topology by

capturing the packets. For detection of attacks and exclusion

of malicious routes, TSOR uses two techniques. First, end-to-

end integrity and hop-to-hop authentication of packets are

enforced. This is done on the basis of the work of ARAN.

Second, a stringent hop-to-hop verification of packet traversal

time is imposed. A combination of these determines the

reliability of a path.

TSOR operates in two phases: route request phase and route

reply phase. Before these phases are discussed in detail, we

present our assumptions and the data structures used in TSOR.

3.1 Assumptions and Data Structures
TSOR uses digital signature for end-to-end integrity and hop-

to-hop authentication. We assume the presence of trusted

Certification Authorities (CAs) for an authentic public key set

up. A node before entering the network must obtain a

certificate from a CA. The certificate binds the IP address of

the node with its public key, which is used by other nodes to

verify the packet signed by the node. In addition to this, it is

assumed that all the nodes are tightly clock synchronized with

a permitted error (clock difference) of . The value of the

parameter must be on the order of a few milliseconds, and

must be known to all the nodes in the network. This type of

time synchronization has been already been used in [16].

Tight time synchronization is necessary for accurate

verification of packet traversal time.

In terms of data structures, a node in TSOR maintains two

tables. One is the route discovery table (RDT) which is used

to store information about the route request packets (RREQ)

processed by the node during the route request phase. An

entry in the RDT corresponds to one RREQ processed by the

node. The RDT contains the following fields:

 Src: IP address of the source from which the RREQ is

originated.

 Dst: IP address of the final destination of the RREQ.

 Src.TD: Departure time of the RREQ from the source.

This time is set by the source node and is present in the

RREQ itself.

 TA: Arrival time of the RREQ at the current node.

 TD: Departure time of the RREQ from the current node.

 PrevHop: IP address of the previous hop from which the

RREQ is received.

The other is the routing table (RT) which is created by a

source node S only after the route reply phase is complete and

the source finds a route to the desired destination. The RT

contains three fields.

 Dst: IP address of the destination node.

 NxtHop: IP address of the next hop through which to

reach the destination.

 TT: Traversal time of the RREQ.

3.2 Working
Now the operation of TSOR is discussed in detail. As already

mentioned, TSOR works in two phases: route request phase

and route reply phase.

Route Request Phase: The route request phase is initiated by a

source S when it needs a route to a destination D but fails to

find a route in its routing table (there is no entry for D in the

routing table of S). In this case, the source S creates a route

request packet (RREQ) which contains the following fields:

 REQ: Request packet type identifier.

 S: IP address of the source S.

 D: IP address of the destination D.

 S.TD: Departure time of the RREQ from S.

 S.Cert: Certificate of S.

The tuple <S, D, Src.TD> uniquely identifies an RREQ. S then

signs the RREQ using its private key (S.PriKey) and

broadcasts the packet. However, before broadcasting, S inserts

a new entry in its route discovery table (RDT) for this RREQ

and also sets a timer. If the source S doesn’t receive a route

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.4, June 2016

45

reply packet (RREP) from the destination D before the timer

expires, it reinitiates a route request phase. A route request

phase is also reinitiated by the source if it receives an RREP

within the timer expires but finds that the security of the

RREP has been compromised (the RREP has reached S

through a malicious path). The source S can make up to ƞ

route request attempts (ƞ is application dependent). The value

of the timer is dynamic and normally based on the round-trip-

time.

Every intermediate node on receiving the RREQ, first verify

the previous nodes’ signature using the previous nodes’ public

keys found in their respective certificates. The intermediate

nodes then examine the uniqueness of the RREQ by checking

the tuple <S, D, S.TD> in their RDTs. If the RREQ is found to

be authentic and unique (the first one), the intermediate nodes

remove the previous nodes’ signature (if the intermediate

nodes are not the immediate neighbors of the source S), sign

the RREQ, append their own certificates, insert an entry in

their RDT for this RREQ, and rebroadcast it. Instead, the

RREQ is rejected.

Eventually, the RREQ reaches the destination D. The first

action taken by D upon receiving the RREQ is to examine the

authenticity of the packet by verifying the signatures of its

previous hop as well as the signature of the source S. If one of

the signatures is found invalid, the RREQ is rejected. On the

other hand, if both the signatures are valid, the destination D

checks the tuple <S, D, S.TD> in its RDT to determine

whether this is the first RREQ for this route request attempt

(recall that, a source can make up to three route request

attempts). There may be three cases.

 Case 1: The tuple <S, D, S.TD> completely matches with

an earlier entry in the RDT of D. It means that the current

RREQ is a duplicate copy of an already processed RREQ

of the recent route request attempts made by the source.

So the current RREQ is rejected.

 Case 2: Only the tuple <S, D> matches with an earlier

entry in the RDT, but S.TD is different. It means that the

current RREQ is the first route request packet of another

(2nd and onwards) route request attempt made by the

source. An earlier attempt has already been made by the

source for which an RREP has been sent to the destination

D. However, the RREP has been rejected by the source

because the packet has reached the source S through a

malicious route. In such case, it becomes necessary for the

destination D to determine whether the current RREQ has

reached D through the same malicious route through

which the earlier RREP (the rejected one) has reached the

source S. To know this, D compares the traversal time (TT

= RREQ’s arrival time - S.TD) of the current RREQ with

the traversal time of that entry in the RDT whose <Src,

Dst> matches the tuple <S, D> of the current RREQ. If the

traversal time of that entry (TA - Src.TD) is found to be

within the range TT±, it implies that the RREQ has

reached the destination D through the same malicious

path. Hence, the current RREQ is rejected. Instead, the

destination accepts the RREQ, deletes the earlier entry in

the RDT whose <Src, Dst> matches the tuple <S, D> of

the current RREQ, inserts a new entry in the RDT for this

RREQ and initiates a route reply phase.

 Case 3: The tuple <S, D, S.TD> doesn’t match with an

earlier entry in the RDT. It means that the current RREQ

is the first route request packet of the first route request

attempt made by the source. Therefore, the destination D

accepts this RREQ, inserts a new entry in its RDT for this

RREQ and initiates a route reply phase.

Route Reply Phase: The route reply phase is initiated by the

destination D in response to its acceptance of an RREQ sent

by the source S. In this phase the destination D creates a route

reply packet (RREP) which has the following fields:

 REP: Reply packet type identifier.

 D: IP address of the RREP’s source.

 S: IP address of the RREP’s destination.

 S.TD: Departure time of the RREQ from the source

S against which this RREP is generated

 TA: Arrival time of the RREQ at D against which

this RREP is generated.

 D.TD: Departure time of the RREP from D.

 D.Cert: Certificate of D.

D then signs the RREP using its private key (D.PriKey) and

unicasts the packet through the reverse route (a reverse route

is automatically set because every intermediate node before

forwarding an RREQ during the route request phase set the

PrevHop field in their route discovery table).

When an intermediate node along the reverse path receives the

RREP, it verifies the signature of the node from which it

receives the RREP. If it is found invalid the packet is rejected.

Instead, the intermediate node compares the RREP’s traversal

time from the destination to the node (RREP’s arrival time -

D.TD) with the traversal time of the RREQ from the node to

the destination against which this RREP is generated (TA -

TD). D.TD and TD are present in the RREP itself, whereas TA

can be obtained from the route discovery table (RDT) of the

intermediate node by comparing the RREP’s tuple <D, S,

S.TD> with the RDT’s entries. If there is a difference of more

than it means that, either a packet redirection attack or a

routing loop attack has occurred on the RREP. Hence, the

intermediate node drops the RREP. This approach has the

advantage that the other nodes along the reverse path from the

current node up to and including the source node don’t have

to unnecessarily process a compromised RREP. On the other

hand, if the traversal times of the RREP and the

corresponding RREQ have a difference of less than or equal

to , the intermediate node considers the RREP as a valid one.

So, the intermediate node removes the signature of the node

from which it has received the RREP (if the intermediate node

is not the immediate neighbor of D), signs the RREP, appends

its own certificate, and unicasts the RREP to the next node in

the reverse path. However, before unicasting the RREP, the

intermediate node deletes the corresponding RREQ entry

from its RDT.

Finally, the RREP reaches the source node S. The source S,

on receiving the RREP, first verifies the signatures of the

node from which it receives the RREP as well as the signature

of the destination D. The source S, then compares the

traversal time of the RREP with that of the corresponding

RREQ in the similar manner as the intermediate nodes do. If

everything is fine the source accepts the RREP, deletes the

respective RREQ entry in its RDT, and makes a new entry in

its RT (Dst = D, NxtHop = The node form which S has

received the RREP). Otherwise, the RREP is rejected and the

source S reinitiates an RREQ phase.

The detailed protocol is given in Algorithm 1.

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.4, June 2016

46

Algorithm 1: /* The procedures TsorSource (S, D), TsorDestination

(S, D), and TsorNode (S, D, X) are respectively executed by the

source S, the destination D, and an arbitrary intermediate node X. */

(1) TsorSource (S, D)

attempt = 0 ; /* Initialize the number of attempts*/

timer = t; /* Initialize the timer */

RouteRequest (S, D); /* Procedure call */

attempt = attempt +1;

start timer; /* Decrement the timer with each clock pulse*/

while (attempt <= ƞ) do

if (timer == 0) then /*Reinitiate route request*/

timer = t;

RouteRequest (S, D);

attempt = attempt +1; start timer;

else

if (type of received packet == RREP) then

if (verifyNodeSign (RREP) and

verifyDstSign (RREP)) then

/*Verify the signature of the node from which the

RREP is received as well as the signature of the

destination*/

TT = RREP’s arrival time - RREP[D.TD];

RDT.R[TD] = TD of that entry in RDT whose

<Src, Dst, Src.TD> is same as RREP’s <D, S,

Src.TD >;

t = RREP[TA] - RDT.R[TD];

if ((TT -) <= t <= (TT +)) then

/* Accept the RREP */

delete (RDT entry having RDT[Src] == S

and RDT[Dst] == D);

/* Insert an entry in the RT */

RT[Dst] = D;

RT[NxtHop] = IP address of the node from

which the RREP is received;

RT[TT] = TT;

end if

else

reject (RREP);

end if

end if

end if

end while

(2) RouteRequest (S, D)

/* Create a RREQ */

S.Sign = <REQ, S, D, S.TD, S.Cert>S.PriKey;

RREQ = <<REQ, S, D, S.TD, S.Cert>, S.Sign>;

delete (RDT entry having RDT[Src] == S and RDT[Dst] == D);

/* Clear RDT and insert an entry in the RDT for this RREQ */

RDT[Src] = S; RDT[Dst] = D;

RDT[Src.TD] = CurrentTime; RDT[TA] = NULL;

RDT[TD] = CurrentTime; RDT[PrvHop] = NULL;

broadcast (RREQ); /* Broadcast the RREQ */

(3) TsorDestination (S, D)

if (verifyNodeSign (RREQ) and verifySrcSign (RREQ)) then

/*Verify the signature of the node from which the RREQ is

received as well as signature of source. */

if (there exists an entry in RTD such that the tuple

<RREQ[S], RREQ[D], RREQ[S.TD]> == the tuple

<RDT[Src], RTD[Dst], TD[Src.TD]>) then

reject (RREQ); /* Duplicate RREQ */

end if

if (there exists an entry in RTD such that the tuple

<RREQ[S], RREQ[D]> == the tuple <RDT[Src],

RTD[Dst]>) then /* 2nd and onwards route request attempt */

TT = RREQ’s arrival time - RREQ[S.TD];

RDT.R[TA] = TA of that entry in RDT whose <Src, Dst>

is same as RREQ’s <S, D>;

RDT.R[Src.TD] = Src.TD of that entry in RDT whose

<Src, Dst> is same as RREQ’s <S, D>;

t = RDT.R[TA] - RDT.R[Src.TD];

if ((TT -) <= t <= (TT +)) then

/* RREQ reached through a malicious path */

reject (RREQ);

else /* Accept the RREQ */

delete (RDT entry having RDT[Src] == S and

RDT[Dst] == D);

/*Insert an entry in RDT for the RREQ*/

RDT[Src] = S; RDT[Dst] = D;

RDT[Src.TD] = RREQ[S.TD];

RDT[TA] = RREQ’s arrival time;

RDT[TD] = CurrentTime;

RDT[PrvHop] = The node from which the RREQ is

received;

RouteReply (RDT[Dst], RDT[Src], DT[PrvHop]);

end if

end if

if (for all entries in RTD the tuple <RREQ[S], RREQ[D],

RREQ[S.TD]> != the tuple <RDT[Src], RTD[Dst],

RTD[Src.TD]>) then

/* 1st route request attempt, Accept the RREQ */

/* Insert an entry in RDT for this RREQ */

RDT[Src] = S; RDT[Dst] = D;

RDT[Src.TD] = RREQ[S.TD];

RDT[TA] = RREQ’s arrival time;

RDT[TD] = CurrentTime;

RDT[PrvHop] = The node from which the RREQ is

received;

RouteReply (D, S, RDT[PrvHop]);

end if

else /* Invalid signatures */

reject (RREQ);

end if

(4) RouteReply (D, S, RDT[PrvHop])

/* Create a RREP */

D.Sign = <REP, D, S, S.TD, TA, D.TD, D.Cert>D.PriKey;

RREP = <<REP, D, S, S.TD, TA, D.TD, D.Cert>, D.Sign>;

unicast (RDT[PrvHop], RREP); /*Unicast RREP*/

(5) TsorNode (S, D, X)

if (type of received packet == RREQ) then

if (verifyNodeSign (RREQ) and

verifyUnique (RREQ)) then /*Verify the signature of the

node from which the RREQ is received, and also the

uniqueness of the RREQ by comparing the RREQ’s tuple <S,

D, S.TD> with the RDT’s tuple <Src, Dst, Src.TD >*/

removePrevSign (RREQ);

/* Remove previous node’s sign if it is not the source */

X.Sign = <RREQ>X.PriKey;

RREQ = <<RREQ>, X.Sign, X.Cert>;

/* Insert an entry in RDT for this RREQ */

RDT[Src] = S; RDT[Dst] = D;

RDT[Src.TD] = RDT[S.TD];

RDT[TA] = Arrival time of the RREQ;

RDT[TD] = CurrentTime;

RDT[PrvHop] = the node from which the RREQ is

received;

broadcast (RREQ); /* Broadcast RREQ */

else

reject (RREQ);

end if

end if

if (type of received packet == RREP) then

if (verifyNodeSign (RREP)) then

TT = RREP’s arrival time - RREP[D.TD];

RDT.R[TD] = TD of that entry in RDT whose <Src, Dst,

Src.TD> is same as RREP’s <D, S, Src.TD >;

t = RREP[TA] - RDT.R[TD];

if ((TT -) <= t <= (TT +)) then

removePrevSign (RREQ);

X.Sign = <RREQ>X.PriKey;

RREQ = <<RREQ>, X.Sign, X.Cert>;

delete (RDT entry having RDT[Src] == S and

RDT[Dst] == D);

unicast (RDT[PrvHop], RREP);

end if

else

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.4, June 2016

47

reject (RREP);

end if

end if

4. SECURITY ANALYSIS
The combination of techniques deployed in TSOR makes it

resilient against all possible damages incurred by malicious

nodes either internal or external to the network. We first

discuss the robustness of TSOR in resisting the following

major attacks that could be effectively launched against a

secure on-demand routing protocol from a random position in

the network.

 Impersonation attack: In TSOR every node is required to

authenticate its neighbor during both route request and

route reply phases. Only those packets are accepted that

are signed with a certified key issued by a CA. Therefore,

it is impossible for an external or an internal compromised

node to impersonate any other node.

 Modification attack: Since all packets are signed by the

initiating nodes (RREQ is signed by the source and RREP

is signed by the destination), any alterations in transit are

immediately detected and the altered packet is

subsequently discarded.

 Fabrication attack: Fabrication attack is prevented,

because in TSOR no intermediate node is allowed to

generate a routing packet.

 Black hole attack: In TSOR, the intermediate nodes are

not allowed to confirm or disconfirm the availability or

reliability of a route either directly by sending a packet to

the source or indirectly by modifying the packet content

(such as modifying the hop count field as in the case of

SAODV). Only the source and the destination has the

capacity to choose a reliable path. So the chance of a black

hole attack is eliminated.

 Wormhole attack: TSOR can resist wormhole attack

because (1) it is topology hiding and hence it is impossible

for attackers to choose central positions in the network to

launch the attack and (2) neither it uses hop count as a

routing metric nor it allows an intermediate node to

modify the packet content.

 Sybil attack: TSOR does not include identity nor topology

information in the routing packets, and thus it is

impossible for malicious nodes to obtain the identity

information of other nodes. Therefore, TSOR is resistant

to Sybil attack.

Next, we examine TSOR against the packet redirection attack,

the routing loop attack, and the packet drop attack as

presented in Section 2, which the existing topology-hiding

protocols fail to defy. We consider the ad hoc network given

in Fig. 1 for our discussion.

 Packet redirection attack: Let us assume that the RREQ

which is accepted by the destination D has reached D

through the path S-N1-N2-N3-N4-D. Suppose node N3 is

malicious. During the route reply phase, when D unicasts

the RREP through the reverse path, node N3 launches a

packet redirection attack by unicasting the RREP to N5

instead of unicasting it to N2. This attack is immediately

caught by the node N2 when it receives the packet from

N5, because when N2 compares the traversal times of this

RREP with that of the RREQ, it finds a difference of more

than the permitted error . If the packet transmission delay

between any two nodes is taken to be Ω and node’s packet

processing time to be µ, then the traversal time of the

RREQ from N2 to D is 3Ω+2µ, whereas the traversal time

of RREP from D to N2 through N5 is 4Ω+3µ. So the

difference is Ω+µ. In such case, N2 rejects the RREP.

When the source S doesn’t receive an RREP within the

time out it reinitiates the route request phase. However,

this time, the destination D accepts the first RREQ which

reaches D trough a different path. Therefore, the malicious

path (that contains N3) is automatically excluded.

 Routing loop attack: Let us consider that the nodes N2,

and N3 are malicious. They launch a routing loop attack in

the route reply phase as follows. When N2 receives the

RREP from N3, it sends the packet back to N3, which

again forwards it to N2. This type of attack is also easily

detected in TSOR, because when N1 receives the RREP

from N2 (after few loops) and compares the traversal

times of this RREP with that of the RREQ, it finds a

difference of more than the permitted error (each loop

takes 3Ω+3µ time) and the RREP is subsequently

discarded by N2.

 Packet drop attack: The packet drop attack is prevented

because when an RREP is dropped by some intermediate

node, the source doesn’t receive an RREP within the timer

expires. Hence, it reinitiates the route request phase. But

this time, the destination doesn’t accept the RREQ which

has traversed through the same malicious path that the

earlier RREQ does. So, automatically the malicious node

is excluded.

5. PERFORMANCE EVALUATION

5.1 Simulation Methodology
The performance TSOR was evaluated using the NS2 network

simulator [17]. TSOR is compared with ARAN with and

without the packet redirection and routing loop attacks. As

discussed in Section 2.2, though ARAN is a topology hiding

protocol, it is prone to these attacks. Both protocols were

simulated using a 512 bit key and 16-byte digital signature.

We used 802.11 MAC layer and CBR traffic over UDP. Node

movement was simulated according to the random waypoint

mobility model [18]. Ten CBR sessions were simulated in

each run, with random source and destination pairs. Each

session generated 1000 packets. A random delay between 0 to

10 ms was introduced before a packet is broadcasted in order

to minimize collisions. Other parameters are listed in Table 1.

Following performance matrices are evaluated for a non-

adversarial scenario when there were no malicious nodes.

 Average packet delivery fraction: It is the average ratio of

packets received by the destination to the packets

generated by the source. It evaluates the ability of the

protocol to discover routes.

 Average routing load in packets: It is the average ratio of

control packets overhead to data packets.

 Average path length: It is the average length of the paths

discovered by the protocol. It was calculated by averaging

the number of hops taken by each received packet.

 Average route acquisition latency: It is the average delay

between the sending of an RREQ by a source to a

destination and the receipt of the first corresponding

RREP by the source.

In order to examine how TSOR performs against ARAN in an

adversarial scenario when the malicious nodes were executing

packet redirection and routing loop attacks, the matrices

average path length and average route acquisition latency are

evaluated, as discussed above, against each attack. These two

matrices were considered important under adversarial setting

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.4, June 2016

48

because they respectively indicate the extent of path

elongation and delay in ARAN under the packet redirection

and routing loop attacks. Longer routes result in greater

routing overhead and longer delays.

Table 1. Simulation parameters.

Parameters Values

Simulation area 1000 m × 1000 m

Channel capacity 2 Mb/s

Number of mobile nodes 50

Node transmission range 250 m

Node movement speed 0, 1, 5, 10 m/s

Pause time between movements 30 s

Packet generation rate 4 packets/s

Packet size 512 bytes

Packet processing delay (including

signature generation and

verification times)

8 ms (5.5 ms for signature

generation, 0.5 ms for

signature verification, 2 ms

for normal processing)

Number of attackers 0-10

5.2 Simulation Results
Fig. 2-5 and Fig. 6-7 show the observed results under non-

adversarial and adversarial scenarios, respectively. Each data

point in the resulting graphs is an average of ten simulation

runs with homogeneous configuration but different randomly

generated mobility patterns.

As shown in Fig. 2-5, the performance of TSOR is almost

identical to that of ARAN in the absence of attackers.

 From Fig. 2, the average packet delivery fraction

decreases as the node speed increases. Both the protocols

keep it above 97%.

 From Fig. 3, there is a steady increase in average routing

load with the increase in node mobility. Compared to

ARAN, TSOR has a very similar routing overhead.

 From Fig. 4, the average path length for both protocols is

relatively stable between 3 to 4 hops.

 From Fig. 5, both ARAN and TSOR have the average

route acquisition latency in the range of [90 ms, 125 ms].

Also, this metric keeps relative stable.

These simulation results above show that TSOR does not

degrade the performance and achieves a very similar

performance as that of ARAN in the scenario where there are

no attackers.

Next, the performances of TSOR and ARAN are analyzed

with respect to average path length and average route

acquisition latency in the adversarial scenario when there are

malicious nodes performing packet redirection and routing

loop attacks. Fig. 6 and 7 compare TSOR with ARAN under

packet redirection and routing loop attacks, respectively. Each

data point in the graph reflects the scenario under different

numbers of malicious nodes ranging from 2 to 10. The nodes

speeds are averaged. As it can be observed, ARAN is greatly

affected by these attacks.

 Fig. 6 shows that the average path length of ARAN is

very high under the attacks. For instance, in the presence

of routing loop attack when the number of attackers

increases to 10, the average path length ARAN becomes

two times as that of TSOR. However, these attacks have

a very little impact on TSOR. The average path length in

TSOR keeps stable in the range of 3 to 4 hops under each

attack even there are 10 attackers. The results show that

TSOR can resist packet redirection and routing loop

attacks effectively. This is because TSOR can exclude

the unreliable routes in the route reply phase before

transmitting packets.

 Fig. 7 depicts that, the average route acquisition latency

in TSOR is not affected by the attacks. It maintains a

stable value that matches the non-adversarial scenario.

However, ARAN suffers a lot. With the packet

redirection attack and routing loop attack, when the

number of attackers is up to 10, the route acquisition

latency increase to 32% and 44%, respectively as

compared to TSOR.

These results clearly show that TSOR provides better security

in terms of finding reliable and shortest routes when

compared with ARAN under the simulated attack models.

Fig. 2. Average packet delivery fraction

Fig. 3. Average routing load in packets

Fig. 4. Average path length

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.4, June 2016

49

Fig. 5. Average route acquisition latency

Fig. 6. Average path length under packet redirection and

routing loop attack

Fig. 7. Average route acquisition latency under packet

redirection and routing loop attacks

6. CONCLUSION
In this paper, the design and analysis of a new secure on-

demand routing protocol for MANET called Topology-hiding

Secure On-demand Routing (TSOR) are presented. The

protocol is based on the philosophy of topology hiding. The

design of TSOR carefully fits the digital signature mechanism

over a stringent hop-to-hop verification of packet traversal

time in order to create an efficient and practical protocol that

is robust against multiple active attacks. TSOR successfully

archives all the security goals like packet integrity,

authentication, availability, and non-repudiation. Performance

evaluation shows that TSOR has a better capability of finding

reliable and shortest under an adversarial scenario in

comparison to the existing topology hiding on-demand secure

routing protocols. However, TSOR does not degrade the

performance when there is no attack. Together with existing

approaches for securing the physical layer and MAC layer

within the network protocol stack, TSOR provides a better

approach for the secure operation of an ad hoc network.

7. REFERENCES
[1] R. Di Pietro, S. Guarino, N.V. Verde, J. Domingo-Ferrer,

“Security in wireless ad-hoc networks – A survey”,

Elsevier Computer Communications 51, 2014, pp.1–20.

[2] Soufiene Djahel, Farid Na¨ıt-abdesselam, and Zonghua

Zhang, “Mitigating Packet Dropping Problem in Mobile

Ad Hoc Networks: Proposals and Challenges”, IEEE

Communications Surveys & Tutorials 13 (4), 2011,

pp.658-672.

[3] W. Galuba, P. Papadimitratos, M. Poturalski, K. Aberer,

Z. Despotovic, W. Kellerer, “Castor: scalable secure

routing for ad hoc networks”, in: Proc. IEEE Conference

on Computer Communications (INFOCOM), 2010, pp.

1-9.

[4] Loay Abusalah, Ashfaq Khokhar, and Mohsen Guizani,

“A Survey of Secure Mobile Ad Hoc Routing Protocols”,

IEEE Communications Surveys & Tutorials 10 (4), 2008

pp.78-93.

[5] Pervaiz, O. Mohammad, Mihaela Cardei, and Jie Wu,

"Routing security in ad hoc wireless networks", Springer

US Network Security, 2010, pp.117-142.

[6] N.M. Chacko, S. Sam, P.G.J. Leelipushpam, "A survey

on various privacy and security features adopted in

MANETs routing protocol", in: International Multi-

Conference on Automation, Computing,

Communication, Control and Compressed Sensing

(iMac4s), 2013, pp.508-513.

[7] S. Kumar, G. Pruthi, A. Yadav, M. Singla, "Security

Protocols in MANETs", in: Second International

Conference on Advanced Computing & Communication

Technologies (ACCT), 2012, pp.530-534.

[8] P. Papadimitratos, Z.J. Haas, "Secure data

communication in mobile ad hoc networks", J. Select.

Areas Commun. 24 (2), 2006, pp.343–356.

[9] Y.C. Hu, A. Perrig, D.B. Johnson, "Ariadne: a secure on-

demand routing protocol for ad hoc networks", in: Proc.

ACM International Conference on Mobile Computing

and Networking (MOBICOM), Atlanta, 2002, pp.23-28.

[10] Jiang, Tingyao, Qinghua Li, and Youlin Ruan, "Secure

dynamic source routing protocol", in: Proc. IEEE

International Conference on Computer and Information

Technology (CIT'04), 2004.

[11] M.G. Zapata, "Securing ad hoc routing protocols", in:

Proc. ACM workshop on wireless Security, Atlanta, Sep

2002, pp.1-9.

[12] K. Sanzgir, B. Dahill, "A secure routing protocol for ad

hoc networks", in: Proc. IEEE International Conference

on Network Protocols, 2002, pp.1-10.

[13] Acs, Gergely, Levente Buttyan, and Istvan Vajda,

"Provable security of on-demand distance vector routing

in wireless ad hoc networks", Springer Security and

Privacy in Ad-hoc and Sensor Networks, 2005, pp.113-

127.

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.4, June 2016

50

[14] S. Ghazizadeh, O. Ilghami, E. Sirin, "Security-aware

adaptive dynamic source routing protocol", in: Proc.

IEEE Conference on Local Computer Networks, 2002.

[15] Yujun Zhang, Tan Yan, Jie Tian, Qi Hu, Guiling Wang,

Zhongcheng Li, "TOHIP: A topology-hiding multipath

routing protocol in mobile ad hoc networks", Elsevier Ad

Hoc Networks 21, 2014, pp.109–122.

[16] Yih-Chun Hu, A. Perrig, D.B. Johnson, "Packet leashes:

a defense against wormhole attacks in wireless

networks", in Proc. IEEE Conference on Computer

Communications (INFOCOM), 2003, pp.1976-1986.

[17] http://www.isi.edu/nsam/ns.

[18] J. Broch, D.A. Maltz, D.B. Johnson, Y.C. Hu, J.

Jetcheva, "A performance comparison of multi-hop

wireless ad hoc network routing protocols", in: Proc.

ACM MOBICOM, Oct. 1998, pp.85–97.

IJCATM : www.ijcaonline.org

