
International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.5, June 2016

13

Cost Optimization of SRGM using Genetic Algorithm

Manish Saraswat
Department of MCA,
Geetanjali Institute of

Technical Studies, Udaipur

ABSTRACT

The applications of computer systems have been increased

immensely during the last few decades and the system

reliability is major concern which is depends upon reliability

of software and hardware components. Software testing is

quality assurance process which confirms that the product is

error free and reliable. The reliability of software is major

quality attribute which ensure failure free operations and

maintainability, therefore reliability assessment is necessary.

Software reliability control the optimal release time and cost

of software development. In this paper various fault detection

and removal strategies are discussed to increase the reliability.

A software reliability growth model with imperfect debugging

based on Non-homogenous Position Process (NHPP) model is

incorporated. The reliability estimation is based on testing and

operational reliability of systems. The various numerical

parameters are examined and results are presented with the

GA tool of MATLAB for optimal release policy based on cost

and reliability criterion.

General Terms

Reliability, Optimization, Genetic Algorithm.

Keywords

Reliability growth, Non-homogeneous Poisson process

Genetic Algorithm, Optimal release policy.

1. INTRODUCTION
Now a day computer systems are used in all aspects of our

life, such as entertainment, education impartment, medical

diagnosis, aviation control, command and control of nuclear

reactions, robot control and so on. The size and complexity of

software is also increasing, especially the software which are

used in real time systems are highly complicated, because

these are concurrent, intercommunicated based on trimming

constraints, cross-plat-formed, heterogeneous, non-

deterministic and consists of large number of modules which

are developed by several methods, tools and techniques.

Software failure can cause a serious problem even fatal in

critical application and loss of business, therefore a effective

software testing is necessary. Testing is one of the most

effective and frequently used quality assurance technique

which is carried throughout the software development

process. It ensures software correctness, completeness and

quality and reliability of system.

Software reliability engineering is focused on developing and

maintaining techniques and models used for software

reliability assessment measure attributes and parameters

quantitatively. In order to assess the reliability of software

systems various models have been introduced by researchers

during last four decades, which may include parameters like

software architecture, testing techniques, software operations

and software failure manifestation mechanisms. The software

reliability models try to record behaviour of software during

the failure with respect to time. There are three reliability

modelling approaches i.e error seeing and tagging, data

domain and time domain.

The time domain approach is most popular and in this

software reliability modelling is to perform curve filling of

observed time based failure data by the pre- specified model

formulae, so that model can be parameterized with statistical

techniques such as least square or maximum like hood

methods. The reliability models based on various assumptions

like:

a) The reliability in operational environment is to be

measured is same as testing environment

b) If the failure occurs, the fault which responsible for

failure must remove immediately.

c) The fault removal process should never introduce a

new fault.

d) A number of faults remain in the software and these

fault manifests them self to cause failure. The fault

may be in statistical source in form of mathematical

formulae. The number of fault and failure rate

reduces when testing is carried out, resulting to this

growth reliability software are often called software

reliability growth models [SRGM].

Software development cost and software reliability both are

interrelated to each other. If reliability is lower than optimum,

the actual cost for developer may be less but it is higher for

customer due to excessive repairs and maintenance while

reliability is higher than optimum, the cost and release time of

product is increases, due to greater and striker requirements

for component assemblies, but maintenance cost of product

for customer is decreases.

In our investigation testing reliability and operational

reliabilities are considered. The testing reliability of the

software is the probability that show the product is error free

during the testing phase while the operational reliability

represent the probability that the product is error free during

the operation phase or execution time. Our present

investigation is focused on to develop the imperfect

debugging(it the chance of occurring new errors during the

development or testing phase) based on non-homogenous

Poisson process (NHPP) model to evaluate the software

testing reliability as well as software operational reliability.

Numerical parameters are examined and results are presented

using genetic algorithm for optimal release policy based on

cost and reliability criterion.

This paper is organized into following sections

In Section 2 a brief overview of related work is presented.

Section 3 provides a brief overview of genetic algorithm and

Matlab. Section 4 presents the model along with necessary

notations and assumptions and software testing model with

testing and operational reliability is also analyzed here.

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.5, June 2016

14

Section 5 examine the results and Section 6 have concluding

remarks and direction for future research work

2. RELATED WORK
In software development life cycle (SDLC) testing and

debugging activities are performed throughout the

development process. Imperfect debugging is the

phenomenon which is based on probability of new fault new

fault or error insertion during the testing or development

phases of software. Several authors [cf Shyur, 2003; Chang

and Lie, 2009; Ahmad et al., 2010; Aggarwal et al., 2010;

Rafi et al., 2010; Ahmad et al. 2011; Aktekin et al., 2013; Jain

et al., 2012; Peng et al., 2014] have studied the concept of

imperfect debugging in SRGM. Jain et al. [2013] discussed a

warranty cost model with imperfect debugging in SRGM.

The SRGM first proposed by Jolinsky and Moranda in 1972

and till date various SRGMs have been proposed some of

them are exponential failure time class models[lyu 1991] ,

weibull & gama[Pham, 2000] function time class

models[Huang,2003], infinite failure category models failure[

Xie, 1996] and Beysian model[Huang et al., 2003] and so

on. A SRGM with imperfect debugging and fault removal

efficient model was discussed by Purnaith et al. [2012].

Satyaprasad et al. [2010] presented genetic algorithm base

imperfect debugging in SRGM. Kapur et al. [2012] discussed

two dimensional SRGM by incorporating the debugging time

lag function. Jain et al. [2014] discussed imperfect debugging

SRGM with testing effort function.

The concepts of testing and operational reliability are major

research area during the last three decades. The various

researchers [cf. Farr and Simith, 1988; Yamada et al.,1992;

Ferdous et al.,1995; Frank et al.,1998; Jain and Priya, 2005;

Kapur and Bardhan, 2008; Bashir et al., 2008] worked on

reliability assessment of software.

 Genetic algorithms are search algorithms which are

conceptually based on the methods, which the living organism

adopts to survive in their living environment. The genetic

algorithms are heuristic in nature, their performance and

output efficiency can vary across the multiple runs. In genetic

algorithms the tests are interpreted as optimization problem

[Goldberg G, 1989]. A few articles and models are

successfully implemented by researchers [cf. Minhora and

Tohma, 1995; Painton and Campbell, 1995; Young et al.,

1999; Levitin and Lisnianski, 2001; Dai et al., 2010; Prasad et

al., 2010; Agarwal et al., 2012].

 Software releasing time is very important factor and it very

difficult to developers to decide when testing is performed

perfectly and when releases the product in mark after

reliability assessment and on what minimum cost

development. The software release time determination is very

important parameter which is discussed by various researchers

on time to time by applying release polices and models

Okumoto and Goel [1980] first discussed the optimal release

policy with respect to cost and benefit point of view. Cost

optimization problem is also discussed by various researchers

in their publications [cf Yamada, 1994; Kimura et al., 1999;

Jain and Priya, 2002]. Huang et al. [2005] discussed the

optimal release time for software with respect to cost testing

effort and test efficiency

Rafi et al. [2010] has discussed optimal release policy of

logistics exponential testing effort function later Chaterjee et

al. [2012] studied optimal release policy on SRGM with

imperfect debugging and change point. Rana et al. [2012]

discussed software release time and cost optimization using

genetic algorithm based approach. Quadri et al. [2011] and

Srivastava et al. [2012] also explained releasing time of

software.

3. GENETIC ALGORITHMS
The Genetic Algorithm is based on principles of natural

selection and natural genetics. Goldberg in 1989 was pioneer

to applying genetic algorithm in area of search and

optimization and machine learning process. It is directed

random search technique, used to find global optimization

solution in a complex and multidimensional Now a day’s

these are using variety of applications like test case

generation, prioritization, scheduling, designing neural

network and combinatorial optimization. The main principle

of genetic algorithm is to optimize the function evolutions by

the continuous changing of population of individual solutions.

The genetic algorithm relies on three basic operators’

reproduction, crossover and mutation, which are described

as:-

Reproduction

This operator determines how the individuals should be

selected for reproduction from the existing population. The

selection of individuals is based on their calculated fitness

value. An individual which contribute more copies in solution

has more probability of being selected in next generation.

There are following two methods of individual selection:

(i) Rowlett wheel

In this method the individuals are selected by statistical

approach. The individuals showing higher fitness on wheel

get more copies in creation of new population while the

individuals showing poor fitness are rejected.

(ii) Binary Tournament

In this method two individuals are selected randomly and an

individual having more fitness is selected as one parent to

construct new offspring. The probability of individual

selection can be calculated as

P1= fitness

P1 =
fitness

 len population fitnessi=0

Crossover

During the reproduction a complete new population of

offspring is constructed, after this crossover operator is

applied to them to generate two new members for next

generation. The crossover operator selects the two parents or

strings having more fitness value and swaps them at

appropriate points to create two new offspring for the next

generation of population.

Mutation

This operator in genetic algorithm introduces a random

alteration in the value of a string position. Therefore the

mutation operator creates a new population by changing the

string position in a single chromosome. The mutation operator

mutates the gene in a chromosome by one or more string

values. In a binary code parameter there is simply changing

of 1 to 0 and vice versa. The mutation operator ensures a

degree of diversity in the population and also prevents the

saturation or stagnation in optimal point.

The overall functionality of Genetic Algorithm is done as

described below:

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.5, June 2016

15

Step 1: initialize the population randomly on the basis of

program and attributes

Step 2: Calculate the fitness of individual chromosome and

select chromosomes which have higher fitness for

construction of next generation offspring.

Step 3: Apply the Crossover operator with high probability at

appropriate points to exchange bit values or information

between two chromosomes to create two new offspring for

next generation.

Step 4: Apply the Mutation operator with low probability to

mutate or change the bit values in one chromosome.

Step 5: Re-calculate the fitness of new generated population

and insert the new population (set new population as current

population).

Step 6: If termination criteria is met, stop the search

otherwise go to step-2

Steps for Genetic Algorithm Implementation

3.1 MATLAB Overview
The MATLAB(Matrix Laboratory) is the scientific software

which was written by Dr. Cleve Moler for Mathworks Inc. to

easy access of matrix product, The MATLAB provides

various tools which automate the various problem solution

steps by facilitating inbuilt functions and parameters. For

genetic algorithm a tool ‘Genetic Algorithm and Direct Search

tool Box’ is provided which extends the optimization

capabilities by providing the useful functions for solution of

optimization based problems. The ‘Genetic Algorithm and

Direct search tool box’ include the routines which are helpful

to searching of best fitness function using genetic algorithm,

simulated annealing with direct search approach. The tool box

also facilitates:

 To specify constraints for optimization problem

 Population size for problem

 Number specification of elite children

 Fitness function Migration among the sub-

populations

These options can be customaries by providing user-defined

functions and represent the problem in a variety of data

formats for example using of variables that are either mix-

integer or complex. Tools also facilitate to set stopping

criteria, stalling fitness limit or number of generations and to

victories the fitness function to improve the execution speed.

4. MODEL DESCRIPTION
This section describes Software Reliability Growth Model

(SRGM) by incorporating impact debugging for a failures.

Following of notations are used to construct the model:

Rte (∆t/t) : Testing Reliability

Rop (∆t/t) : Operational Reliability

R0 : Reliability Requirement

m(t) : Mean value function

λ(t) : Failure intensity function

aj(t): Time dependant fault contents function for jth type

error, j=1,2,3

aj : Expected number of errors to be eventually detected

bj : Error detection rate for jth type error, j=1,2,3

βj : Fault introduction rate for jth type error, j=1,2,3

pj : Content proportion of jth type error, j=1,2,3

C(T) : cost function of software system at time T

R(T) : Reliability function of software system at time T

Following of assumptions are considered for software

reliability growth modelling:

(i) When the errors are detected and removed from the

software system, there may be possibility for new errors

insertion during the fault removal process.

(ii) The probability of finding an error in a program is

proportional to mean number of remaining faults in the

remaining system.

(iii) The probability of introducing a new error is constant

(iv)The fault removal processes are controlled by non-

homogenous Poisson Process (NHPP)

Based on the assumptions, we have following differential

equation to governing of SRGM:

𝑑𝑚 (𝑡)

𝑑𝑡
=bj (aj(t)-m(t)), (1)

𝑑𝑎𝑗 (𝑡)

𝑑𝑡
=𝛽𝑗

𝑑𝑚(𝑡)

𝑑𝑡
 (2)

Equation (1) defines the fault observation and now we solve

the equation under the initial conditions as:

aj(0)= apj, m(0)=0, so obtain,

m (t)=
𝑎𝑝𝑗

1−𝛽𝑗
 1 − 𝑒−𝑏𝑗 1−𝛽𝑗 𝑡 , (3)

and

aj(t)=
𝑎𝑝𝑗

1−𝛽𝑗
[1 − 𝛽𝑗 exp(−𝑏𝑗 1 − 𝛽𝑗 𝑡 (4)

In this study our main purpose is to evaluate the total number

of faults removed, therefore the mean value function is

considered as follows:

m(t)= 𝑚𝑗
3
𝑗 =1 (𝑡)

In this paper our main purpose is to evaluate the total number

of faults removed, therefore the mean value function is

considered as follows:

m(t)= 𝑚𝑗
3
𝑗 =1 (𝑡)

Software Release Time on basis of Reliability Criteria

The decision about software releasing time is very crucial for

developers because it depends upon completion of testing and

achieving reliability levels. In this section we will discuss

software release policy on the basis of reliability criteria. A

software release time depends upon to proper judgment of

reliability levels, software should be reached on optimal level

of reliability before its releasing in market for real life

applications.

In this paper we have considered testing and reliability

constraints, both of constraints are used analyze and to

understand the problem of optimal software release time. The

testing and operational reliability can be expressed by

following equations:

Rte= (∆t/t) =exp [m (t)-m (m+∆t)]

Rop= (∆t/t) =exp [λ (t) ∆t)]

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.5, June 2016

16

Release policy of Software based on Cost Criteria

Let C (T) is the total cost function incurred on the testing of

software system. The cost function can be explained as:

C (T) = C1m (T) + C2 [m (Tl) - m (T)] + C3 (T)

Where C1 is correction cost, error during the testing phase and

C2 is the correction cost, during the operational phase;

(C2>C1), C3 is the cost of testing per unit testing effort

expenditures and Tl is software life cycle length.

Release policy of Software based on Cost- Reliability

Criteria

This section describes and suggests the optimal release policy

for the software in terms of cost and reliability criterion. The

ideal situations state that software should achieves optimal

reliability level (R0) in minimum cost. Our fundamental

objective is to exactly determine optimal release time that

minimizes the total cost to acquire the highest level of

reliability (R0).The cost optimization problem for proposed

software reliability estimation model is formulated as:

Minimize C (T)

Subject to Rte(∆t/t) ≥R0,

 Rop (∆t/t) ≥R0

Where C2> C1>0, C3>0; ∆t>0, 0< R0<1.

Let TRte and TRop denotes the optimal release times satisfying

equation for testing and operational reliability respectively

5. RESULT ANALYSIS
In this section suggested policies, numerical values and

assumptions are examined by implementing them in

MATLAB. For solution purpose default parameters are set as;

C1=300, C2=900, C3=400, a=100, p1=0.0173, p2=0.3420,

p3=0.6407, β1=.1, β2=.2, β3=.5, b1=0.01, b2=0.02, b3=0.03. On

the basis of these numerical parameters, various results are

obtained and graphs have been plotted against numerical

values.

The graphical representation of cost and reliability function

with respect to time is explained. The figure 1(i-vi) represents

the results for cost C(T) with respect to time(T) for the

various values of b1, b2 ,b3 i.e fault detection rates and β1,

β2,β3 i.e faults introduction rates. The plots concludes that cost

C(T) decreases to minimum level after that it gradually

increases by increasing the values of b1, b2 , β1, β2, β3 but in

case of increment in value b3, the cost C(T) is increases, this is

due to fact that mere cost is involved in removal of fault.

The figure 3 and Figure 2 explain effects of different

parameters on operational reliability (Rop) and testing

reliability (Rte).The figure 2(i-vi) shows that R(T) constantly

increases with increasing values of testing time, it gradually

increases for the increasing values of b1,b2,b3,β1,β2. The plot

also shows that when there is increment in value of β3, there is

decreasing trend of reliability. The figure 3 (i-vi) shows that

the R(T) grows rapidly with respect to incremental time of

testing. Same trend is seen for the increased values of b1, b2,

b3, β1, β2, and β3.

Optimal Release Time Estimation using Genetic

Algorithm

In this section we have tried to calculate the optimal release

time of software by applying proposed model and genetic

algorithm.

To estimate the optimal release time and corresponding cost,

we have used the default parameters values as: C1=300,

C2=900, C3=400, a=100, p1=0.0173, p2=0.3420, p3=0.6407,

β1=.1, β2=.2, β3=.5, b1=0.01, b2=0.02, b3=0.03 for the solving

optimization problem formulated in above stated equation.

The table 1 describes various parameter of genetic algorithm

to provide the optimal solution:

Table 1.1: Genetic Algorithm Parameters

S.No Parameter name Parameter value

1 Population Size 100

2 Population Type Double Vector

3 No. Of Generations 30

4 Selection Method Tournament

5 Cross Over Probability 0.8

6 Mutation Probability 0.1

During the experiment implementation we have observed that

genetic algorithm is effective, it is useful to solving software

reliability growth by facilitating exact optimal release time.

The optimal release time and corresponding cost obtained by

genetic algorithm for the discussed illustration and parameter

values is T*= 14.231 and Cost C(T)= $ 4465364.34.

1(i)

1(ii)

495

500

505

510

515

520

525

5 15253545556575

C
 (

T)
 in

 T
h

o
u

sa
n

d
s

Testing Time(T)

b1=.03

b1=.05

b1=.07

45
47
49
51
53
55
57
59

5 15 25 35 45 55 65 65

C
 (

T)
 in

 T
h

o
u

sa
n

d
s

Testing Time(T)

b2=.01

b2=.02

b2=.03

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.5, June 2016

17

1(iii)

1(iv)

1(v)

1(vi)

Fig: 1 C(T) vs T for Varying parameters (i) b1 (ii) b2 (iii)b3 (iv)β1 (v)β2 (vi)β3

2(i)

2(ii)

50

52

54

56

58

60

62

5 15 25 35 45 55 65 75

C
 (

T)
 in

 T
h

o
u

sa
n

d
s

Testing Time(T)

b3=.01

b3=.03

b3=.05

54.5

55

55.5

56

56.5

57

57.5

58

5 14 23 32 41 50

C
o

st
 C

(T
)

in
 t

h
o

u
sa

n
d

s

Testing Time(T)

β1=0.1

β1=0.3

β1=0.5

50

52

54

56

58

60

62

64

5 14 23 32 41 50

C
(T

)
in

 T
h

o
u

s
a

n
d

s

Testing Time(T)

β2=0.1

β2=0.2

β2=0.3

50

51

52

53

54

55

56

57

58

5 20 35 50 65 80

C
 (

T)
 in

 T
h

o
u

sa
n

d
s

Testing Time(T)

β3=0.3

β3=0.4

β3=0.5

0

0.2

0.4

0.6

0.8

1

5 15 25 35 45 55

Te
st

in
g

R
(T

)

Testing Time(T)

b1=0.01

b1=0.03

b1=0.05

0

0.2

0.4

0.6

0.8

1

5 15 25 35 45 55

Te
st

in
g

R
(T

)

Testing Time(T)

b2=0.01

b2=0.03

b2=0.05

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.5, June 2016

18

2(iii)

2(iv)

2(v)

2(vi)

Fig:2 Testing Reliability R(T) vs T for Varying parameters (i) b1 (ii) b2 (iii)b3 (iv)β1 (v)β2 (vi)β3

3 (i)

3(ii)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

5 15 25 35 45 55

Te
st

in
g

R
(T

)

Testing Time (T)

b3=0.01

b3=.03

b3=0.05

0

0.2

0.4

0.6

0.8

1

5 15 25 35 45 55

Te
st

in
g

R
(T

)

Testing Time(T)

β1=0.1

β1=0.3

β1=0.5

0

0.2

0.4

0.6

0.8

1

5 15 25 35 45 55

T
e

s
ti

n
g

 R
(T

)

Testing Time(T)

β2=0.1

β2=0.3

β2=0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 15 25 35 45 55

T
e

s
ti

n
g

 R
(T

)

Testing Time(T)

β3=0.1

β3=0.3

β3=0.5

0.91

0.93

0.95

0.97

0.99

5 15253545556575

O
p

e
ra

ti
o

n
al

 R
(T

)

Testing Time(T)

b1=.03

b2=.05

b3=.07
0.88

0.9
0.92
0.94
0.96
0.98

1

5 15253545556575

O
p

e
ra

ti
o

n
al

 R
(T

)

Testing Time(T)

b2=.03

b2.05

b2=.07

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.5, June 2016

19

3(iii)

3(iv)

3(v)

3(vi)

Fig: 3 Operational Reliability R(T) vs T for Varying

parameters (i) b1 (ii) b2 (iii)b3 (iv)β1 (v)β2 (vi)β3

6. CONCLUSIONS
In this paper we have studied Software Reliability Growth

Model (SRGM) with imperfect debugging based on Non-

homogenous Position Process (NHPP) and proposed a quite

general and suitable model for modeling the reliability growth

for many real time and embedded software systems. In this

paper testing and operational reliability are considered, both

of reliability criterion are helpful determine reliability

constraints and to minimize the cost of software development.

In this paper we have used genetic algorithm tool to calculate

total expected cost of software development and optimal

release time.

7. REFERENCES
[1] Frankl et.al.[1998], ‘Evaluating testing methods by

delivered reliability’, IEEE Transactions on Software

Engineering, 24(8), page(s) 586-601, doi:

10.1109/32.707695.

[2] Kapur and Bardhan [2006], ‘Statistical Models in

Software Reliability and Operations’ Research, Springer

Handbook of Engineering Statistics 2006, pp 477-496

Print ISBN 978-1-85233-806-0.

[3] Bashir et. al. [2008], ‘Reliability and Validity of

Qualitative and Operational Research Paradigm’

Pakistan Journal of Statistics and Operation

Research, Vol. 4. No. 1, Jan 2008, pp35-45.

[4] Tevfik and Toros[2013], ‘Imperfect debugging in

software reliability: A Bayesian approach’, Elsevier in its

journal European Journal of Operational Research

Volume (Year):2013.

[4]Peng et al.[2014], ‘Testing effort dependent software

reliability model for imperfect debugging process

considering both detection and correction’, Reliability

Engineering & System Safety, Volume 126 . pp. 37-43.

ISSN 0951-83203

[5] Agarwal et al.[2010], ‘Optimal testing resource

allocation for modular software considering imperfect

debugging and change point using genetic algorithm’,

DOI:10.1109/ICRESH,2010

[6] Rafi and Akthar[2010], ‘Imperfect Debugging SRGM

with Software Module Testing and Resource Allocation

Dependent Release Policy’ International Journal of

Computer applications, © 2010.

[7] Lyu [1996], ‘Handbook of Software Reliability

Engineering’, IEEE Computer Society Press and

McGraw-Hill, 1996.

[8] Pham[2000], Software Reliability, Springer,

Singapore,2000.

[9] Xie[1991], Software Reliability Modelling, World

Scientific Publishing Company, 1991

[10] Huang et al.[2003], ‘A Unified Scheme of Some Non-

Homogeneous Poisson Process Models for Software

Reliability Estimation’, IEEE Transactions on Software

Engineering, vol. 29, no. 3, March 2003, pp. 261-269.

[11] Prasad et al.[2012], ‘SRGM with Imperfect Debugging

by Genetic Algorithms’, International Journal of

Advanced Research in Computer Science and Software

Engineering, Volume 2, Issue 8, August 2012 ISSN:

2277 128X

0.91

0.93

0.95

0.97

0.99

5 15253545556575

O
p

e
ra

ti
o

n
al

 R
(T

)

Testing Time(T)

b3=.03

b3=.05

b3=.07

0.92

0.94

0.96

0.98

1

5 15253545556575O
p

e
ra

ti
o

n
al

 R
(T

)

Testing Time (T)

β1=0.1

β1=0.3

β1=0.5

0.92

0.94

0.96

0.98

1

5 15253545556575

O
p

e
ra

ti
o

n
al

 R
(T

)

Testing Time(T)

β2=0.1

β2=0.3

β2=0.5

0.92

0.94

0.96

0.98

1

5 15253545556575

O
p

e
ra

ti
o

n
al

 R
(T

)

Testing Time(T)

β3=0.1

β3=0.3

β3=0.5

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.5, June 2016

20

[12] Rana and Bilandi[2013], ‘A Genetic Based Intelligent

Approach to Estimate Software Release Using Agile’MIS

Review Vol. 18, No. 2, March (2013), pp. 19-50, 2013.

[13] Quadri et al.[2011], ‘Optimal Software Release Policy

Approach Using Test Point Analysis and Module

Prioritization’, Global Journal of Computer Science and

Technology Volume 11 Issue 2 Version 1.0 February

2011,online ISSN: 0975-4172 & Print ISSN: 0975-4350.

[14] Agarwal et al.[2012], ‘Genetic Algorithm Based optimal

testing effort allocation problem for modular software,

BVICAMs, International Journal of Information

Technology ,vol. 4,No.1,pp-17.

[15] Boland and Chuiv[2007], ‘Optimal Times for software

release when the repair is imperfect’, Statistics and

probability Letters,Vol.77, No. 12,pp1176-1184.

[16] Chang and Liu[2009], ‘A Generalized JM model with

applications to imperfect’, Vol 33, No.9, pp3578-3588.

[17] Chartterjee et al.[2012], ‘Effect of change point and

imperfect debugging in software reliability and its

optimal release policy’ Mathematical and Computer

Modelling, of Dynamic Systems, Vol. 18, No. 5,pp 539-

551

[18] Jain and Priya[2005] ‘Software reliability issues under

operational and testing constraints’, Asia-Pacific Journal

of Operational Research,Vol.22,No.1 pp 33-49.

[19] Jain et al.[2012], ‘Software reliability growth

model(SRGM) with imperfect debugging, fault reduction

and multiple change-point, International Journal of

Mathematics in operation research.

[20] Okumoto and Goel[1980], ‘Optimum release time for

software system based on reliability and cost criteria’,

The journal of system and software, Vol.14, No. 1,pp

315-318.

[21] Pham [1996], ‘software cost model with imperfect

debugging, random life cycle and penalty cost,

International journal of system science, Vol 27, No 12 pp

453-463.

[22] Prasad et al. [2010], ‘SRGM with imperfect debugging

by genetic algorithm’, International Journal of software

engineering and applications, Vol. 1, No 2,pp 66-79.

[23] Minhora and Tohma[1995], ‘Parameter estimation of

hyper geometric distribution software reliability growth

model by genetic algorithms’, proceedings of sixth

international journal of software Engineering.

[24] Painton and Cambell[1995], ‘Genetic Algorithm in

optimization of system reliability’, IEEE transactions on

reliability, Vol 44,No. 2, pp172-178.

[25] Farr and Smith[1988], ‘A tool for statistical modelling

and estimation of reliability functions for software’,

Journal of system software, Vol. 8 No. 1, pp 47-55.

[26] Goldberg DE[1989], ‘Genetic Algorithms in search,

optimization and Machine Learning’, Addition-Wesley.

[27] jain et al.[2013], ‘Prediction of reliability growth and

warranty cost of software with fault reduction, imperfect

debugging and multiple change point, international’,

journal of operation research.

IJCATM : www.ijcaonline.org

