
International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.7, June 2016

32

Pairwise Alignment using ABC Optimization

Ankit Choubey
 PG-Scholar

IET-Devi Ahilya University
Indore - 452017, India

G. L. Prajapati, PhD
Dept. of Computer Engg.
IET-Devi Ahilya University

Indore - 452017, India

ABSTRACT
In Artificial Bee Colony (ABC) optimization, we find better

solution by employing neighbourhood search strategy using

the current solutions. Researchers have tested ABC in many

practical optimization problems. In this paper, we propose an

application of ABC for the pairwise DNA sequence alignment

in order to observe its performance in bioinformatics

computation. We compare our results with the pairwise

alignment algorithm FASTA. The results are encouraging. We

also demonstrate ABC on Graph Coloring problem using

different traversing strategies.

Keywords

Graph Coloring problem, Artificial bee colony optimization,

DNA pairwise sequence alignment.

1. INTRODUCTION
Artificial Bee Colony algorithm (ABC) was initially

published by Karaboga in 2005 as a technical report for

numerical optimization problems. ABC is based on foraging

behavior of honey bees [1]. It has been applied to solve many

practical optimization applications.

2. THE GROWTH OF ABC

ALGORITHM
After the invention of ABC by Karaboga in 2005 [1]. The first

journal article describing ABC and evaluating its performance

was presented by Karaboga and Basturk [2], in which the

performance of ABC was compared to GA, PSO and particle

swarm inspired evolutionary algorithm.

3. HOW ABC ALGORITHM WORKS?
ABC consists of employed and unemployed foragers and food

sources. The ABC consists of three groups of artificial bees:

employed forgers, onlookers and scouts. Employed bees and

onlookers are equal and comprise half of population size.

In the basic ABC [2], there are 3 kinds of bees: employed,

onlooker and scout bees.

3.1 Phases of ABC
It generally consists of four phases.

1) Initialization of ABC.

Determine the population size. Half of population size are

employed bees and half are onlooker’s bees.

Generate the random initial candidate solutions for employed

bees using the equation in [2]. Determine the parameter max

iteration, limit.

2) Employed bees phase

For all employed bees

Generate new candidate solution using the equation given in

[1]. Also, calculate the fitness value of the new solution using

the equation given in [1].

If fitness of new candidate solution is better than the existing

solution replace the older solution.

Calculate the probability for each individual.

3) Onlooker bee phase.

For all onlooker bees

Select an employed bees using roulette wheel.

Produce new candidate solution.

Compute fitness of individual.

If fitness of new candidate solution is better than the existing

solution replace the older solution.

4) Scout bee phase

 If any food source exhausted then replace it by randomly

generated solution by scout memorize the best solution.

Until (stopping criteria is not met).

4. APPLICATIONS OF ABC

4.1 Graph Coloring Problem.
Graph Coloring Problem (GCP) is the assignment of colors to

the nodes of a graph such that no two adjacent vertices can

have the same color. In this paper we have used two new

traversing techniques DFS and BFS. By using BFS and DFS

in ABC algorithm it takes less number of iteration to find

chromatic number. However using DFS or BFS results are

same.

4.1.1 ABC Algorithm for Graph Coloring

problem
In this section we describe the ABC for Graph Coloring

Problem.

4.1.1.1 Initialization
Randomly generate NB/2 food source in search space using

DFS or BFS and generate a corresponding random number to

nodes in a graph Xi. Obtain the sequences by sorting the Xi.

Calculate the fitness for NB/2 sequences. Find the best

solution and stored in global best GB.

4.1.1.2 Employed Bees
Obtain the new sequences using the policy described in next

section. Calculate the fitness of new sequences. Share the

information with onlooker bees.

4.1.1.3 Onlooker bees
Obtain the new sequences by using information shared by

employed bees. Calculate the fitness of new sequences

obtained. Update the GB by new result obtained.

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.7, June 2016

33

4.1.1.4 Scout bees
If one bee dissatisfied from a food source then generate new

solution using the traversing strategy.

4.1.2 Policy used for neighborhood discovery.
The most important is to choose the node which is going to

change its order. Only one node will change its order. Here,

we randomly choose one dimension from current solution

denoted by j. And acc. to the equation we update the solution.

𝑁𝑆𝑖 = 𝑂𝑆𝑗 + 𝑂𝑆𝑗 − 𝑂𝑆𝐹𝑗 𝑋 𝑟𝑎𝑛𝑑 −1,1

Where NSi is new solution, OSj is old solution, OSFj is old

solution fitness and i & j is the dimension chosen. Fitness=1/ci

where Ci is the color used.

4.1.3 Fitness assignment and search space
The search in this problem for a graph having n nodes is

constructed by n! Sequences and it is NP-Complete problem.

For Fitness assignment we have used sequence based

coloring. Our fitness assignment colors the node in the

priority of a produced sequence rather than searching for a

largest degree of nodes.

4.1.4 Experimental results.
We have used Erdos Renyi random graph generator to

generate random graphs. Table 1 shows the comparison of

ABC with some relevant algorithms. Edge density is also

varied from sparse to dense for all graphs and results are taken

on 50 graphs on edge density 0.10, 0.20, 0.30, 0.50, and 0.75

and then average is taken to compare the results with the

relevant algorithms FF [3], LDO [4], SDO [5].

Table 1: Comparison with relevant algorithms

|V|

Number

of nodes

Number of colors used

First

Fit

Largest

degree

ordering

(LDO)

Saturation

Degree

Ordering

(SDO)

Artificial

Bee

Colony

with

DFS&BFS

20 5.7 5.02

 4.76

4.36

50 11.32 10.42

10.11

9.82

100 18.32 17.17

15.64

15.60

It is mentioned that all experiment are conducted on a

Notebook PC with CPU 1.2 GHz using the Matlab R2008b.

4.2 DNA pairwise sequence alignment.
A DNA Sequence is arrangement of l characters randomly.

For DNA Sequence it consist of 4 different nucleotides A

(Adenine), C (Cytosine), G (Guanine), and T (Thymine). A

sequence alignment is a way of arranging the letters of DNA,

RNA, or protein in order to identify similarity that may be

functional, structural, or evolutionary relationships between

the sequences. There are two types of Alignment

1) Local Alignment. 2) Global Alignment

In this paper we proposed an algorithm for pairwise alignment

[7]. It is the method used to find the best matching piece wise

(local) or global alignment of two sequences.

We have to align two sequence in such way that they give

maximum match score. To align two sequence we have to

insert gaps in the sequences. However gaps are 20% of the

sequences length. We have used score matrix as for match

value (1), mismatch (0) and for gaps penalty (0).

4.2.1 Proposed DNA sequence alignment using

ABC optimization.
In this section we describe our proposed algorithm for DNA-

pairwise sequence alignment. Figure 1 shows the pseudo code

for ABC-DNA.

No. Main body of ABC-DNA sequence alignment

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Input: - Two sequences to be aligned.

Output:-Aligned Sequences.

//variable GBS stores global best alignment score

//GB is a cell array holds the current sequences and

//their alignment score.

Initialization: - Randomly find NB/2 sequence by

inserting gaps between the two sequences.

Calculate fitness for each NB/2 Sequence and store

global best score in GBS.

While(iter < maxiteration)

Begin

Employed Bees()

Calculate the fitness of new Sequences obtained.

Onlooker bees()

Update GB by new result obtain by the onlooker

bees.

End while

If solution is not going to improve after maxiteration

Repeat the algorithm by generating randomly new

NB/2 sequences //Scout bees()

End if

Return GBS

End.

//sub functions

Employed Bees()

 Begin

 For all NB/2 Sequences

Select an existing gap randomly, and shift this gap

randomly anywhere in the sequence.

Update cell array GB

 End

Figure 1: Algorithm for ABC-DNA

An explained earlier ABC algorithm there are three kinds of

bees which are employed bees, onlooker bees, scout bees.

Here the sequence is food source .number of initial solution is

denoted by NB.

By starting algorithm an initialization is done in which we

randomly choose NB/2 sequence by inserting gaps in the

sequences. When initialization stage is completed employed

bees phase starts in which we select an existing gap randomly

and shift this gap randomly anywhere in the sequence, after

doing this employed bees phase shares its information with

the onlooker bees. Onlooker bees choose sequences from

employed bees and does the same work as employed bees,

and update the result in GB. If solution does not improve after

max iteration then repeat the algorithm. Here iteration is the

current loop. Maxiteration is the maximum number of

iteration. Formally algorithm is described in Figure 1.Here

Fitness is the maximum match score.

Comparison has been done with FASTA [6] algorithm and

results have been taken. ABC-DNA have been tested on fixed

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.7, June 2016

34

length DNA sequence of 5, 10, 20 length. Result has been

taken by running algorithm on different sequences than

average has been taken. Table 2 and Table 3 show comparison

between FASTA and ABC-DNA. Results show that match

score of the two algorithms are same but number of gaps in

FASTA algorithm is more than our proposed ABC-DNA

algorithm. ABC-DNA also generate different alignment for

sequence with less number of gaps.

Table 2: Difference in alignment between FASTA and

ABC-DNA for pairwise alignment.

Length of a

Sequence
FASTA ABC-DNA

5
g-c--gcg

gactt---

gcgc-g

ga-ctt

10
g-c--gcgtgcg-c

gacttg--tg-ga-

g-cgcgtgcgc

gacttgtg-ga

20

g-c--gcgtgcgcggaa---

gga---gcc

gacttg--tg-g---aacct--

actt-cc

gcgcgtgcgcggaagg-

a--gcc

g-ac-t-tgtggaacctac

ttcc

Table 3: Comparison between FASTA and ABC-DNA for

pairwise alignment.

Length

of a

Sequence

FASTA ABC-DNA

Score Gap Score Gap

5 2.20 2.40 2.20 1.20

10 5.40 4.40 5.40 2.40

20 8.40 6.20 8.60 4.40

4.2.2 Parameters of ABC-DNA
Important parameters of ABC are population size, number of

iteration and limit. Here Number of Bees (NB) is 40, number

of iteration is 200, and limit is 10.

We have conducted all the experiments on a Notebook PC

with CPU 1.2 GHz using the Matlab R2008b

5. CONCLUSIONS
ABC algorithm optimally colors the vertices in a graph as

compared with other greedy algorithms LDO, SDO, FF. It is

also found that ABC-DNA algorithm aligns the sequences

slightly better than the FASTA algorithm. ABC-DNA results

better in local alignment of sequences. However, as a future

work the performance of ABC-DNA algorithm can be tested

in global alignments for DNA and protein sequences.

6. REFERENCES
[1] D. Karaboga. An idea based on honey bee swarm for

numerical optimization. Techn. Rep. TR06, Erciyes Univ.

Press, Erciyes, 2005.

[2] Dervis Karaboga · Bahriye Basturk, “A powerful and

efficient algorithm for numerical function optimization:

artificial bee colony (ABC) algorithm” J Glob Optim

(2007), pp 459-471.

[3] A. H. Gebremedhin, “Parallel graph coloring.” PhD

Thesis, University of Bergen, Norway, 1999.

[4] D. De Werra, “Heuristics for Graph Coloring

Computational Graph Theory.” Comput Suppl, Springer,

Vienna 7:19 11-208, 1990.

[5] D. Brelaz, “New methods to color the vertices of a

graph.” Commun ACM, 22 (4):251-256, 1979.

doi:10.1145/359094.359101

[6] Lipman, DJ; Pearson, WR (1985). "Rapid and sensitive

protein similarity searches". Science 227 (4693):1435–

41. Doi:10.1126/science.2983426. PMID 2983426.

[7] Mount DM. (2004). Bioinformatics: Sequence and

Genome Analysis (2nd Ed.). Cold Spring Harbor

Laboratory Press: Cold Spring Harbor, NY. ISBN 0-

87969-608-7.

IJCATM : www.ijcaonline.org

https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1126%2Fscience.2983426
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/2983426
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-87969-608-7
https://en.wikipedia.org/wiki/Special:BookSources/0-87969-608-7

