
International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.7, June 2016

7

Blackjack Game using Object Oriented Programming

Methodology and Python

Harshad Naik
Computer and IT Department

VJTI
Mumbai-19, India.

ABSTRACT

In this paper, it has been described how to implement the

Blackjack game using Object Oriented Programming in the

programming language Python. Object oriented programming

is a programming technique which involves dividing the

program into classes which have attributes (data) and methods

(functions). Objects are basically instances of classes. By

using Object Oriented Programming one can get several

benefits such as ease of maintainability and code reuse.

General Terms

Blackjack, Python, Object Oriented Principles, Classes and

Objects.

Keywords

Blackjack, Python, Object Oriented Principles.

1. INTRODUCTION
Blackjack is a popular card game that is played in casinos.

There are two main players. The two players are as follows,

the Dealer who represents the casino and the player who is

playing. Initially both the dealer and the player are dealt two

cards each. Both cards of the player are kept face up. One card

of the dealer is kept face up and the other is kept face down.

The objective of this game is to get a score equal to 21 or as

close to 21 as possible without exceeding 21.King, Queen and

jack have a value of 10, Ace can have a value of 11 or 1.

Other cards have value as per their rank. The Player has two

options. He can hit and take another card or he can stand and

stop taking cards. If the player crosses 21, he is busted and he

loses. If the player stands, dealer starts drawing cards till he

reaches 17 or crosses 17.Whoever has higher score will win.

Getting a score of 21 will automatically invoke stand. The

Player cannot lose if he reaches 21 (21 is called Blackjack).

He can only tie or win once his score is 21. In general, the

player can win in two scenarios. First, if his score is greater

than that of the Dealer. Second if the Dealer busts. There are

two types of scores. For example if one is dealt an ace and a

four, then the score can be a „soft‟ 5 or it can be 15 depending

on how we count an ace (Ace can have a value of 1 or 11).

This is the most challenging part of implementing blackjack,

since ace can be 1 or 11.

2. DESIGNING CLASSES
The code has been organized into 5 classes:

 Card

 Hand

 Deck

 Play

 CardLabel.

The classes have been described below.

2.1 Card
This class is used to represent individual cards.

It has attributes as follows:

 Rank: Tells value of the card. Example: 2, 3, A, K

etc.

 Suit: Tells value of Suit. Example: Clubs, Spade,

Diamond or Hearts

 Id: Useful for displaying the images of cards.

It has following methods:

 Get_rank(self): Tells us the rank of the card.

 Get_suit(self): Tells us the suit of the card.

2.2 Hand
This is used to represent the hand of the dealer or player. That

is, it represents the cards that the player or dealer currently

owns.

It has attributes as follows:

 Cards[]: An array to store cards

It has following methods:

 add_card(self,card): Used to add a card to the hand.

 get_value(self): Tells us the score of the hand

 soft_value(self): Tells us the soft value of the hand.

2.3 Deck
Deck represents the pack of 52 cards. It is used to deal cards

to the dealer and player.

It has the following attributes:

 Cards[]:

 An array which stores cards of all suits and ranks at

the start.

It has following methods:

 Shuffle(self): A method which shuffles the cards in

the deck using random method of python.

 Deal_card(self): A method which pops card from

deck and returns the card.

2.4 Play
This class is responsible for handling the flow of the game.

It has the following attributes:

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.7, June 2016

8

 myDeck: An instance of class deck.

 hPlayer: An instance of Hand. Represents the

player‟s hand.

 hDealer: An instance of Dealer. Represents the

dealer‟s hand.

 in_play: Variable used to find if game is on or if it‟s

finished. Set to false when player/dealer busts or

once game is over.

It has the following methods:

 Hit(self): Used when the player wants to Hit. It adds

a card to the player‟s deck. It also checks if

player/dealer busted while invoking hit. Also if

player reaches 21, it displays message of blackjack

 and invokes stand. If player busts, it increments

losses by 1.

 Stand(self): It keeps adding cards to the dealers

hand until it reaches 17. Depending on scores of the

player and dealer, it displays appropriate message

and also updates the statistics regarding win, losses

and ties.

 check_black_jack(self): checks if the player has a

blackjack. Useful when the game has just begun, it

is called to check if player has a blackjack with the

two cards he has received.

 Restart(self): Used to start a new game.

2.5 CardLabel
This class is responsible for fetching the images and

displaying them.

It has the following attributes:

 images[]: stores all images of cards that have been

imported using Photo Image Library.

It has the following methods:

 load_images(): static method which uses

PhotoImage library to load the images from given

directory to the array called images[].

 Display(self,side,id): Used to display the image.

Side can be front or back. Id is used to access a

specific index from the array images[].

2.6 Other Functions
Other functions include display() which invokes display of

CardLabel to display the cards of the dealer and the player.

Instructions() displays the instructions of the game to the user.

Fig 1: The Graphical interface of blackjack game designed by me in tkinter.

Fig2: Figure shows the game when it’s just started.

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.7, June 2016

9

Fig3. Figure shows hard and soft scores of the player’s hand.

3. DESIGNING THE GUI
The GUI is designed using tkinter and PhotoImage library of

python. In this case the grid functionality of tkinter is used to

divide the graphical interface into rows and columns as shown

in figure 2, 4 buttons have been provided which allow the user

to start a new game, Hit, Stand and Instructions. New game,

Hit and Stand invoke methods restart() ,hit() and stand() of an

instance of class play. Instructions button invokes the function

instructions(). As can be seen above, there is a provision to

display up to 11 cards. The reason for this being the maximum

number of cards that are required to reach 21 or beyond is 11

cards. This has been proved below.

3.1 Reason for providing provision to

display only 11 cards for Player/Dealer:
Assume a scenario in which the first 4 cards that the

player/dealer receives are all aces. This would give him a soft

score of 4 and a hard score of 14. Now let the next 4 cards he

receive be 2‟s (Since 2 has the least score after an ace, if ace is

counted as 1). This gives the player/dealer a score of 12. Now

all aces and 2‟s in the deck are exhausted. Now lets us assume

that the player/dealer gets two 3‟s as his next cards. This takes

his score to 18. Now if he gets 3, he will reach blackjack and

it will lead to stand automatically. If he gets any other card

then he will bust. Thus in the worst case the total number of

cards needed to reach blackjack or to bust is 4+4+2+1=11.

Hence a player can draw 11 cards to the maximum possible

extent.

4. ALGORITHM
The algorithm for this program is pretty simple. The main

function creates an instance of play. That instance contains

myDeck, hPlayer, hDealer (instances of class Deck, Hand and

Hand respectively).

1) In the init() function of play, myDeck.shuffle() is

called which shuffles the cards using the random

function of python.

2) Using myDeck.dealCard(), deal 2 cards to the

player and Dealer.

3) Display function can be called to display cards. We

check if Player has reached blackjack. If yes, then

invoke the method stand(). If no then wait for the

next call.

4) If the player clicks hit we invoke the method hit().

Another card is added to the player‟s hand. We

check if Player has busted (that is his score is more

than 21. We call get_value() method to find the

score.) If score is 21, player has blackjack and we

invoke the method stand() is invoked.

5) If the Player invokes the method stand() then cards

are added to the hand of the dealer until the dealers

score reaches 17 or above. Then compare the scores

of the Player and the Dealer and declare the winner.

6) The display() function is called each time hit() or

stand() is invoked.

4.1 Counting ace as one or eleven
This is taken care of in the get_value() function which returns

the hard score of the player. The Algorithm for this is as

follows:

1) Initially all aces are counted as 11. Also count the

number of aces and store it in a variable called

no_aces.

2) While the score exceed 21 and no_aces is greater

than 0 then subtract 10 from the score and

decrement the value of no_aces by 1.

3) This ensures that the dealer and the player are not

disadvantaged when they get an ace.

In the function soft_value(), the value of ace is always

counted as 1. soft_value() gives the player an idea as to how

much squeezing room he has.

5. CONCLUSIONS AND FUTURE

SCOPE

5.1 Conclusion
It has been explained how the game of blackjack can be

implemented in python using Object Oriented Programming

and tkinter for making the user interface. Object Oriented

Programming makes it simpler to write functions as the logic

needed to write it is simplified. It also helps in code reuse and

International Journal of Computer Applications (0975 – 8887)

Volume 144 – No.7, June 2016

10

maintainability. For example, these classes of card, deck and

hand can be reused to implement a card game like Rummy.

5.2 Future Scope
The function of split and double in the blackjack game have

not been implemented in this game. Those functions can be

implemented and added to this game. Also if actual money is

being used, then one can add the functionality of placing and

increasing bets. One can also use these classes and change

only the display() function and port the game to pygame.

Pygame can be used to provide an even more attractive GUI.

Perhaps sound effects can be added to make the game for

immersive.

6. REFERENCES
[1] Article from Business Insider India dated June 25,

2014:http://www.businessinsider.in/You-Better-Know-

These-Basic-Rules-Before-You-Even-Think-Of-Playing-

Blackjack/articleshow/37197646.cms.

[2] Paul Gries, Jennifer Campbell and Jason Montojo.

“Practical Programming Second Edition An Introduction

to Computer Science Using Python 3”. (2014).

[3] Timothy C Lethbridge and Robert Laganiere “Object-

Oriented Software Engineering”. (2004).

[4] Webpage on rules of Blackjack by website

wizardsofodds.com:http://wizardofodds.com/games/blac

kjack/basics/

[5] Webpage how to play blackjack by the website

http://entertainment.howstuffworks.com/how-to-play-

blackjack.htm

[6] K. Lieberherr, I. IIolland, A. Riel, 1988, Object-Oriented

Programming: An Objective Sense of Style.

[7] Bjarne Stroustrup, What is „„Object-Oriented

Programming‟‟? (1991 revised version).

IJCATM : www.ijcaonline.org

