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ABSTRACT 
An unsteady two dimensional free convective flow of visco-

elastic fluid past a flat surface with heat and mass transfer has 

been investigated. The surface is oscillating with about a 

mean velocity U0. Oscillating temperature and concentration 

about  T∞ and C∞ respectively have been considered at the 

surface. The visco-elastic fluid flow is characterized by 

Oldroyd-B fluid model having two rheological parameters: 

relaxation time and retardation time. In the governing fluid 

flow, a magnetic field of uniform strength B0 has been applied 

along the transverse direction to the surface. Governing 

equations of motion are solved analytically by using 

perturbation scheme. Analytical expressions for velocity 

profiles, shearing stress at the surface, temperature and 

concentration fields are obtained. Results are discussed 

graphically for various combinations of flow parameters 

involved in the solution. A special emphasis is given on the 

effects of relaxation and retardation times. 
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1. INTRODUCTION 
The mechanism of visco-elastic fluid flow has attracted many 

scientists and researchers because of its uses in various 

industries. In visco-elastic fluid flow, energy is dissipated due 

to the presence of viscosity and elasticity restores the energy. 

Oldroyd [1, 2] has formulated a model characterizing the 

phenomena of visco-elastic fluid and it is named as Oldroyd 

fluid model. In oldroyd fluid model, the three rheological 

parameters are relaxation time, retardation time and co-

efficient of viscosity. The constitutive equation of Oldroyd 

fluid model is given by 

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜏𝑖𝑗  

 1 + 𝜆1

𝑑

𝑑𝑡
 𝜏𝑖𝑗 = 2𝜇  1 + 𝜆2

𝑑

𝑑𝑡
 𝑒𝑖𝑗                             (1.1) 

where, σij  is stress tesnor, p hydrostatic pressure, δij  

kronecker delta, τij  viscous-stress tensor, λ1 relaxation time, 

λ2 retardation time, μ co-efficient of viscosity, eij  is strain 

tensor and 
d

dt
 is material derivative. (λ1 = 0, λ2 =

0) characterizes Newtonian fluid, (λ1 = 0, λ2 > 0) 

characterizes Second-grade fluid, (λ1 = 0, λ2 < 0) 

characterizes Walters liquid and (λ1 ≠ 0, λ2 = 0) represents 

the Maxwell fluid model. 

Rajagopal & Bhatnagar [3] have formulated the exact 

solutions for some simple flows of an Oldroyd-B fluid. An 

exact periodic solution of hydro-magnetic flow of an Oldroyd 

fluid in a channel has been obtained by Ray et al. [4]. Flow 

behaviour of Oldroyd fluid in presence / absence of magnetic 

field have been investigated by Hayat et al. [5, 6]. Hall effects 

on the unsteady hydromagnetic flows of an Oldroyd-B fluid 

have been analysed by Asghar et al. [7]. Ghosh [8] has 

studied Unsteady Hydro-Magnetic Flow of an Oldroyd Fluid 

through a Porous Channel with Oscillating Walls. 

Gebhart and Pera [9] studied the problem of vertical 

convection flows resulting from combined buoyancy effects 

of thermal and mass diffusion.  Heat and mass transfer flow 

problems of Newtonian or non-Newtonian fluid in presence of 

magnetic field with various physical properties have been 

investigated by Ericksen et. al. [10],  Zueco and Ahmed [11], 

Chaudhary and Jain [12], Makinde [13], Choudhury and Dey 

[14, 15, 16] and Choudhury et al. [17]. 

The objective of the present study is to investigate the effects 

of relaxation and retardation parameter on free convective 

visco-elastic flow past an oscillating surface with heat and 

mass transfer in presence of transverse magnetic field. 

2. MATHEMATICAL FORMULATION 
An unsteady two dimensional free convective visco-elastic 

fluid flow characterized by Oldroyd model past an oscillating 

surface with heat and mass transfer has been investigated. 

Here x-axis is taken along the length of the plate and y-axis is 

perpendicular to it. The surface is oscillating with about a 

mean velocity U0.  A magnetic field of uniform strength B0 is 

applied in the direction perpendicular to the fluid flow. 

Induced magnetic field is neglected as the magnetic Reynolds 

number is very small for weekly conducting system. 

Boussinesq approximation has been used. With the above 

assumptions, the equations of governing fluid motion are as 

follows: 

Momentum equation: 

𝜌  
𝜕𝑢′

𝜕𝑡′
+ 𝜆1

𝜕2𝑢′

𝜕𝑡′2
 =  1 + 𝜆1

𝜕

𝜕𝑡′
  𝑔𝛽 𝑇′ − 𝑇∞ + 𝑔𝛽∗(𝐶′

− 𝐶∞) + 𝜇  
𝜕2𝑢′

𝜕𝑦′2
+ 𝜆2

𝜕3𝑢′

𝜕𝑦′2𝜕𝑡′
 

−  1 + 𝜆1

𝜕

𝜕𝑡 ′
 𝜎𝐵0

2𝑢′                             (2.1) 

Energy equation:  

𝜕𝑇′

𝜕𝑡′
=

𝐾

𝜌𝑐𝑝

𝜕2𝑇′

𝜕𝑦′2
                                                             (2.2) 

Energy equation for species concentration: 

𝜕𝐶′

𝜕𝑡′
= 𝐷

𝜕2𝐶′

𝜕𝑦′2
                                                                 (2.3) 



International Journal of Computer Applications (0975 – 8887) 

Volume 144 – No.9, June 2016 

35 

 

 

 

 

 

 

 

 

 

 
Figure 1: Geometry of the Problem 

Here 𝑢′ is the velocity along 𝑥′- axis, T′ the temperature, T∞  

temperature of fluid far away from plate, C′ concentration of 

fluid,  C∞  concentration of fluid away from the plate, g the 

acceleration due to gravity,  ρ the density of the fluid, β and  

β
∗
 are the coefficient of thermal and concentration expansion, 

D the thermal diffusivity, K the thermal conductivity, cp  the 

specific heat at constant pressure. 

The corresponding boundary conditions are as follows: 

𝑦 ′ = 0, 𝑢′ = 𝑈0 + 𝜖𝑈0𝑒
𝑖𝜔 ′ 𝑡 ′

, 𝑇 ′ = 𝑇∞ + 𝜖 𝑇𝑤 − 𝑇∞ 𝑒𝑖𝜔 ′ 𝑡 ′
, 𝐶′

= 𝐶∞ + 𝜖(𝐶𝑤 − 𝐶∞)𝑒𝑖𝜔 ′𝑡′  

𝑦 ′ → ∞ , 𝑢′ → 0, 𝑇 ′ → 𝑇∞ , 𝐶 ′ → 𝐶∞                        (2.4) 

Here Tw  and Cw  are temperature and concentration of fluid at 

the wall respectively 

3. METHOD OF SOLUTION 
To make the equations dimensionless, following non-

dimensional quantities have been used into the equations (2.1) 

to (2.3), 

𝑦 =
𝑈0𝑦′

𝜈
, 𝑢 =

𝑢′

𝑈0
, 𝑡 =

𝑡′𝑈0
2

𝜈
, 𝜃 =

𝑇′ − 𝑇∞

𝑇𝑤 − 𝑇∞
, 𝜙 =

𝐶′ − 𝐶∞

𝐶𝑤 − 𝐶∞
, 𝑎

= 𝜆1

𝑈0
2

𝜈
, 𝑏 = 𝜆2

𝑈0
2

𝜈
, 𝑀 =

𝜎𝐵0
2𝜈

𝜌𝑈0
2  

𝐺𝑟 =
𝑔𝛽(𝑇𝑤 − 𝑇∞)

𝜌𝑈0
3 , 𝐺𝑚 =

𝑔𝛽∗(𝐶𝑤 − 𝐶∞)

𝜌𝑈0
3 , 𝑆𝑐 =

𝜈

𝐷
,

𝑃𝑟 =
𝜇𝑐𝑝
𝐾

                                                 (3.1) 

Following set of dimensionless equations are obtained, 

𝜕𝑢

𝜕𝑡
+ 𝑎

𝜕2𝑢

𝜕𝑡2
=  1 + 𝑎

𝜕

𝜕𝑡
  𝐺𝑟𝜃 + 𝐺𝑚𝜙 +

𝜕2𝑢

𝜕𝑦2
+ 𝑏

𝜕3𝑢

𝜕𝑦2𝜕𝑡

−  1 + 𝑎
𝜕

𝜕𝑡
 𝑀𝑢                                    (3.2) 

𝑃𝑟
𝜕𝜃

𝜕𝑡
=

𝜕2𝜃

𝜕𝑦2
                                                                              (3.3) 

𝑆𝑐
𝜕𝜙

𝜕𝑡
=

𝜕2𝜙

𝜕𝑦2
                                                                              (3.4) 

The relevant boundary conditions for solving the equations 

(3.2) and (3.3) are as follows: 

y = 0, u = 1 + ϵeiωt , θ = ϵeiωt , ϕ = ϵeiωt   & y → ∞, u →
0, θ → 0, ϕ → 0                                                                           (3.5)  

 To solve the equations (3.2) – (3.4), perturbation technique 

has been adopted, where velocity, temperature and 

concentration in the neighbourhood of the surface is assumed 

as 

𝑢 = 𝑢0 + 𝜀𝑒𝑖𝜔𝑡 𝑢1 + 𝑜 𝜀2 , 𝜃 = 𝜃0 + 𝜀𝑒𝑖𝜔𝑡 𝜃1 + 𝑜 𝜀2 , 𝜙
= 𝜙0 + 𝜀𝑒𝑖𝜔𝑡 𝜙1 + 𝑜 𝜀2                      (3.6) 

Using (3.6) in the above equations (3.2)- (3.4), and equating 

the co-efficient of 𝜀, the zeroth order and first order equations 

are given as follows: 

𝜃0
′′ = 0                                                                                        (3.7) 

𝜙0
′′ = 0                                                                                         (3.8) 

𝜃1
′′ + 𝑖𝜔𝑃𝑟𝜃1 = 0                                                                      (3.9) 

𝜙1
′′ + 𝑖𝜔𝑆𝑐𝜙1 = 0                                                                   (3.10) 

𝑢0
′′ − 𝑀𝑢0 = −𝐺𝑟𝜃0 − 𝐺𝑚𝜙0                                                (3.11) 

𝑢1
′′  1 + 𝑖𝑏𝜔 − 𝑢1 𝑖𝜔 − 𝑎𝜔2 + 𝑎𝑀𝑖𝜔 + 𝑀 

= 𝐺𝑟 1 + 𝑖𝑎𝜔 𝜃1

+ 𝐺𝑚  1 + 𝑖𝑎𝜔 𝜙1                              (3.12) 

The relevant boundary conditions are: 

𝑦 = 0, 𝑢0 = 1, 𝑢1=1, 𝜃0 = 0, 𝜃1 = 1, 𝜙0 = 0, 𝜙1 = 1  
𝑦 → ∞, 𝑢0 → 0 , 𝑢1 → 0, 𝜃0 → 0, 𝜃1 → 0, 𝜙0 → 0, 

𝜙1 → 0                                                                                       (3.13) 

4. RESULTS AND DISCUSSIONS 
Solving the above equations, the velocity profile in the 

neighbourhood of the plate is  

𝑢 = 𝑒− 𝑀𝑦 + 𝜖 cos 𝜔𝑡 + 𝛼 + 𝑖𝜖 sin 𝜔𝑡 + 𝛼                  (4.1) 

The shearing stress is represented by the first order 

differential equation, 

 1 + 𝑎
𝜕

𝜕𝑡
 𝜏 =  1 + 𝑏

𝜕

𝜕𝑡
  

𝜕𝑢

𝜕𝑦
                                            (4.2) 

where, 𝜏 is the dimensionless shearing stress and is given by 

𝜏 =
𝜏′

𝜌𝑢0
2 

Solution of the differential equation (4.2) subject to the 

condition 𝜏 = 0 at y = 0 is given by 

𝜏 = 1 +
𝜖

1 − 𝑎2𝜔2
 sin 𝛽 + 𝜔𝑡 − 𝑖 cos⁡(𝛽 + 𝜔𝑡)           (4.3) 

The stream function of the governing fluid motion is obtained 

as 

𝜓 =
𝑒− 𝑀

− 𝑀
+ 𝜖 𝑋𝑐𝑜𝑠 𝜔𝑡 + 𝑌𝑠𝑖𝑛(𝜔𝑡)                                (4.4) 

Results are calculated for an arbitrary set of values of flow 

parameters present in the solution. The graphs of Velocity 

profiles are drawn against y for Hartmann number (M) (figure 

2), relaxation parameter (figure 3) and retardation parameter 

(figure 4). From the figures, it is seen that, as it moves away 

from the surface, velocity is decreasing steadily from a fixed 

value at the surface. Application of magnetic field along the 

transverse direction generates Lorentz force and it decelerates 

the fluid motion governed by Oldroyd fluid model. 

Two rheological parameters a and b characterize the 

relaxation and retardation parameters. Increase of relaxation 

ceases the stickiness of the system and effect of friction will 

be lesser, so mechanical energy will be maintained and as a 

result speed of the governing fluid motion increases (figure 3). 

On the other hand, during the growth of retardation parameter, 
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effect of friction will be higher and as a consequence a 

decelerating trend is noticed in fluid motion (figure 4). 

Shearing stress at the plate is drawn against time for various 

values other flow parameters involved in the solution. 

It is seen that (fig 5) in the interval [0, 0.5] the increase of 

relaxation parameter subdues the magnitude of shearing 

stress. Physically it can be interpreted as, the growth of 

relaxation reduces the power of friction and as a result of that 

shearing stress decreases. But an opposite pattern is noticed in 

the interval [0.5, 1.1]. This periodical nature of shearing stress 

is observed as time increases. 

Fig -6 represent the nature of shearing stress against time for 

various values of retardation parameter. Here also it is noticed 

the same periodic nature of shearing stress. The growth of 

retardation parameter makes the fluid thicker and as a result 

the shearing stress at the plate increases. This phenomenon is 

noticed in [0, 0.5], [1.1, 1.7] etc. but opposite nature is noticed 

in [0.5, 1.1] etc so on. 

In this paper  the figures of stream functions have been drawn 

against time t for various values of relaxation parameter and 

retardation parameter along with other flow parameters. The 

figures show that the stream function varies periodically with 

time. The growth of the relaxation parameter subdues the 

magnitude of the stream function in the intervals [0, 0.4], [1.1, 

1.7] etc. but an opposite pattern is noticed in the intervals [0.4, 

1.1], [1.7, 2] etc. The growth of the retardation parameter 

enhances the magnitude of the stream function in the intervals 

[0, 0.4], [1.1, 1.7] etc. but an opposite pattern is noticed in the 

interval [0.4, 1.1], [1.7, 2] etc so on.  

5. CONCLUSIONS 
Free convective hydromagnetic visco-elastic fluid flow 

characterized by Oldroyd model in presence of heat and mass 

transfer past an oscillating surface has been investigated. 

Some of the important are concluded as follows: 

1. When relaxation parameter increases velocity of the 

fluid increases. 

2. When retardation parameter increases velocity of 

the fluid decreases. 

3. In the time period 0-0.5 and 1.1-1.7 shearing stress 

decreases with the increase in relaxation parameter 

and increases with the increases in retardation 

parameter. 

4. In the time period 0.5-1.1 and 1.7-2 shearing stress 

increases with the increase in relaxation parameter 

and decreases with the increases in retardation 

parameter. 

5. The stream function gives the flow pattern of the 

fluid flow.  

Also, it can be concluded that the work may be extended in 

future by considering the effects of radiation, Joule heating 

and Soret Dufour effects in the heat and mass transfer 

problems. 

 

6. GRAPHS 

 

 Figure 2: Velocity u against displacement y for a=0.1,b=0.1,Pr =3, Sc=1, 𝝎=5,t=0.1,Gr=7,Gm=3,𝜺=0.01 
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Figure 3: Velocity u against displacement y for b=0.1,M=4, Pr =3, Sc=1, 𝝎=5, t=0.1, Gr=7,Gm=3, 𝜺=0.01 

 

Figure 4: Velocity u against displacement y for a=1,M=4, Pr =3, Sc=1, 𝝎=5, t=0.1, Gr=7,Gm=3, 𝜺=0.01 

 

Figure 5: Shearing stress against time t for b=1, M=4, Pr =3, Sc=1, 𝝎=5, Gr=7, Gm=3, 𝜺=0.01 
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    Figure 6: Shearing stress against time t for a=1, M=4, Pr =3, Sc=1, 𝝎=5, Gr=7, Gm=3, 𝜺=0.01 

  

Figure 7: Stream function against t for b=1, M=4, Pr =3, Sc=1, 𝝎=5,y=0.1 Gr=7, Gm=3, 𝜺=0.01 

  

Figure 8: Stream function against t for a=1, M=4, Pr =3, Sc=1, 𝝎=5,y=0.1 Gr=7, Gm=3, 𝜺=0.01 
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8. APPENDIX 

CONSTANTS 

𝑐𝑜𝑠𝛼 = 𝐶12𝑎𝑒
−𝐴13𝑦𝑐𝑜𝑠𝐴14𝑦 + 𝐶12𝑏𝑒

−𝐴13𝑦𝑠𝑖𝑛𝐴14𝑦
− 𝐴9𝐺𝑟𝑒

−𝐴7𝑦𝑐𝑜𝑠𝐴7𝑦
− 𝐴9𝐺𝑚𝑒−𝐴8𝑦𝑐𝑜𝑠𝐴8𝑦
− 𝐴10𝐺𝑟𝑒

−𝐴7𝑦𝑠𝑖𝑛𝐴7𝑦
− 𝐴10𝐺𝑚𝑒−𝐴8𝑦𝑠𝑖𝑛𝐴8𝑦 

         𝑠𝑖𝑛𝛼 = −𝐶12𝑎𝑒
−𝐴13𝑦𝑠𝑖𝑛𝐴14𝑦 − 𝐶12𝑏𝑒

−𝐴13𝑦𝑐𝑜𝑠𝐴14𝑦
+ 𝐴9𝐺𝑟𝑒

−𝐴7𝑦𝐴7𝑦 + 𝐴9𝐺𝑚𝑒−𝐴8𝑦𝑠𝑖𝑛𝐴8𝑦
− 𝐴10𝐺𝑟𝑒

−𝐴7𝑦𝑐𝑜𝑠𝐴7𝑦
− 𝐴10𝐺𝑚𝑒−𝐴8𝑦𝑐𝑜𝑠𝐴8𝑦 

 𝑐𝑜𝑠𝛽 = 𝑎𝜔𝐴15 − 𝑏𝜔𝐴15 − 𝐴16 − 𝑎𝑏𝜔2𝐴16 ;          𝑠𝑖𝑛𝛽 =

𝐴15 + 𝑎𝑏𝜔2𝐴15 + 𝑎𝜔𝐴16 − 𝑏𝜔𝐴16 

𝐴1 = 𝑀 − 𝑎𝜔2 ;  𝐴2 = 𝜔 + 𝑎𝜔 ;  𝑀𝐴3

=
𝐴1 + 𝐴2𝑏𝜔

1 + 𝑏2𝜔2
 ;  𝐴4 =

𝐴2 − 𝐴1𝑏𝜔

1 + 𝑏2𝜔2
 

𝐴5 =
1 + 𝑎𝑏𝜔2

1 + 𝑏2𝜔2
 ;  𝐴6 =

𝑎𝜔 − 𝑏𝜔

1 + 𝑏2𝜔2
 ;  𝐴7 =  

𝑃𝑟𝜔

2
 ; 𝐴8

=  
𝑆𝑐𝜔

2
 

𝐴9 =
𝐴3𝐴5 + 𝐴4𝐴6 − 2𝐴6𝐴7

2

𝐴3
2 + (𝐴4 − 2𝐴7

2)2
 ;  𝐴10

=
𝐴3𝐴6 − 𝐴5𝐴4 + 2𝐴5𝐴7

2

𝐴3
2 + (𝐴4 − 2𝐴7

2)2
 

𝐴11 =
𝐴3𝐴5 + 𝐴4𝐴6 − 2𝐴6𝐴8

2

𝐴3
2 + (𝐴4 − 2𝐴8

2)2
 ;  𝐴12

=
𝐴3𝐴6 − 𝐴5𝐴4 + 2𝐴5𝐴8

2

𝐴3
2 + (𝐴4 − 2𝐴8

2)2
 

𝐴13 =  1 +  1 + 𝐴4
2 ;  𝐴14 =

𝐴4

 2  1 +  1 + 𝐴4
2 

 

𝐴15 = −𝐴13𝐶12𝑎 + 𝐴14𝐶12𝑏 + 𝐴7𝐴9𝐺𝑟 − 𝐴8𝐴9𝐺𝑚

− 𝐴7𝐴10𝐺𝑟 − 𝐴8𝐴10𝐺𝑚  

𝐴16 = −𝐴13𝐶12𝑏 + 𝐴14𝐶12𝑎 − 𝐴7𝐴9𝐺𝑟 − 𝐴8𝐴9𝐺𝑚

− 𝐴7𝐴10𝐺𝑟 − 𝐴8𝐴10𝐺𝑚  

𝐶1 = 0, 𝐶2 = 0, 𝐶3 = 0, 𝐶4 = 1, 𝐶5 = 0, 𝐶6 = 0, 𝐶7

= 0, 𝐶8 = 1, 𝐶9 = 0, 𝐶10 = 1, 𝐶11

= 0 

𝐶12𝑎 = 1 + 𝐴9𝐺𝑟 + 𝐴9𝐺𝑚  ;  𝐶12𝑏

= 𝐴10𝐺𝑟 + 𝐴10𝐺𝑚  ;  𝐶12

= 𝐶12𝑎 + 𝑖𝐶12𝑏  
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𝑋

= −𝐶12𝑎

e−A13 y

A13

− C12b

e−A13 y A14 cos A14y + A13 sin A14y  

A13
2 + A14

2

− A9Gr

e−A7y sin A7y − cos⁡(A7y) 

2A7

− A9Gm

e−A8y sin A8y − cos⁡(A8y) 

2A8

+ A10Gr

e−A7y cos A7y + sin⁡(A7y) 

2A7

+ A10Gm

e−A8y cos A8y + sin⁡(A8y) 

2A8
 

𝑌

= C12a

e−A13 y A14 cos A14y + A13 sin A14y  

A13
2 + A14

2

+ C12b

e−A13 y A14 sin A14y − A13 cos A14y  

A13
2 + A14

2

+ A9Gr

e−A7y cos A7y + sin A7y  

2A7

+ A9Gm

e−A8y cos A8y + sin A8y  

2A8

+ A10Gr

e−A7y sin A7y − cos A7y  

2A7

+ A10Gm

e−A8y sin A8y − cos A8y  

2A8
 

NOMENCLATURE 
σij   Stress tesnor. 

 p   Hydrostatic pressure. 

 δij   Kronecker delta. 

 τij   Viscous-Stress tensor. 

 λ1  Relaxation time. 

 λ2  Retardation time. 

 μ   Co-efficient of viscosity. 

 eij  Strain tensor. 

d

dt
   Material derivative. 

B0  Uniform strength. 

U0  Mean velocity. 

T′   Temperature. 

T∞ Temperature of fluid far away from plate.  

C′   Concentration of fluid. 

         C∞  Concentration of fluid away from the plate. 

 g    Acceleration due to gravity.  

 ρ   Density of the fluid. 

 β   Coefficient of thermal expansion. 

 β∗
 Coefficient of concentration expansion. 

 D  Thermal diffusivity. 

 K  Thermal conductivity. 

 cp  Specific heat at constant pressure. 

𝑀  Hartman number. 

𝐺𝑟  Grashoff number for heat transfer. 

𝐺𝑚  Grashoff number for mass transfer. 

𝑆𝑐  Schmidt number. 

𝑃𝑟  Prandtl number. 
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