
International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.10, July 2016

16

Software Reliability Prediction using Fuzzy Inference

System: Early Stage Perspective

Syed Wajahat A. Rizvi
Department of Computer
Science, BBD University,

Lucknow

Raees Ahmad Khan
Department of Information
Technology, Dr. Bhimrao

Ambedkar University, Lucknow

Vivek Kumar Singh
Department of Information

Technology, BBDNITM,
Lucknow

ABSTRACT

The paper presents a reliability prediction model that predicts

the reliability of the developing software using fuzzy

inference system. The focus of the study is on the reliability

prediction prior to the coding phase so that the developers use

this information for optimally performing resource planning

and quality assessment of the software under development.

Requirements and object-oriented design level product

measures have participated for early reliability prediction. The

paper has also utilized the strengths of fuzzy logic to deal with

the uncertainties and vagueness involved in the early stage

measures. The model has also been statistically validated

through the data set obtained through twenty real software

projects. The values of the Pearson’s correlation coefficient

along with the predictive accuracy measures are quite

encouraging, and support that the developed model is a better

and improved reliability prediction model.

Keywords

Software Reliability, Early Stage Prediction, Fuzzy Logic,

Software Defects, Software Metrics, Software Reliability

Model.

1. INTRODUCTION
Literature has defined the software reliability as the

probability that a given software system has operated for

some duration without being fail on the machine for which it

was designed, given that it is used within design limits [1, 2].

As in the current scenario internet has been reducing the

distances between geographical boundaries all over the globe

and every sector of society whether it is transportation,

military, telecommunication, aircrafts, shopping, home

appliances, entertainment, education, e-governance, and so

on, are highly influenced by computer software [3]. Such

dependence as well as the trust on software is forcing the

industry to provide more user friendly software within limited

development time and resources. Consequently this pressure,

up to some extent, has been increasing the probability of

committing errors and making the software less reliable [4].

The literature exposes several unpleasant happenings related

to the failures of software in a variety of domains [2, 4, 5, 6,

7] due to that many people lost their lives. Lee L. in 1992

described in his book that many patients lost their lives in

1985 and 1986 due to software error in the Therac-25

radiation therapy machine [4]. One incident was reported in

1993 by South West Thames regional health authority on the

computer aided dispatch system that was broken after its

installation, consequently London ambulance service was

unable to handle more than 5000 daily request for carrying

patients in emergency situations [5]. Due to incompatible

software responses to the pilots, aviation industry had also

faced lots of airline crashes and abnormal flight conditions

[6]. On January 28, 1986, space shuttle challenger broke apart

73 seconds into its flight, leading to the death of its seven

crew members [2]. Due to the change in the three lines of

code in a single program in 1991, the telephone system

collapsed in California and eastern parts [5]. On February 25,

1991, during the Iraq war, the chopping error that missed the

0.000000095 second in precision in every 10th of a second

made the patriot missile fail to intercept a scud missile [6].

One of the major causes behind all these unfortunate events is

the presence of unreliable software.

As reliability has become a critical factor in software systems,

its prediction is of great importance. An accurate estimate of

reliability can be obtained through software reliability models

only in the later phase of development. However, with the

objective of cost-effectiveness and timely management of

resources its prediction in the early phases of software

development is one of key area of concern [8, 9, 10]. In this

paper, the author has proposed reliability modeling that has

used the fuzzy inference system to predict the reliability of the

developing software before the coding start. The rest of the

paper is organized as follows; section 2 describes the state-of-

art on reliability prediction models. Section 3 presents the

proposed reliability prediction model, while the proposed

model has implemented in section 4. Statistical validation and

the predictive accuracy of the model are presented in Section

5, while the paper concludes in section 6.

2. RELATED WORK
During last twenty to twenty five years a significant number

of software reliability prediction or estimation models have

been proposed in the literature. These models have quantified

the reliability during various stages of software development,

most of them had predicted the reliability in later stages, while

some had advocated its prediction in the early stages like

requirements or design. According to Pham [11], reliability

models can be classified in two major categories as

deterministic and probabilistic models. Probabilistic models

can be further categorized in four classes as (a) Failure rate

model, (b) Fault count model, (c) Error seeding model, and

(d) Software Reliability Growth Models (SRGMs). Failure

rate models focus on the failure rate, rather on the count of

failures. While the failures count models have interest in the

number of failures during a specified duration rather than the

duration gap between failures [12]. Failure seeding models

estimate the number of faults on the basis of known number

of seeded defects in the software [13], and a software

reliability growth model is applicable in the last phases of

software development and quantifies the software reliability

in terms of estimated residual defects. They are called

SRGMs, because with the progress of software testing

residual defects decreases, while the reliability of the software

grows [12]. In the absence of fault related data SRGMs are

not applicable. In this situation researchers have an option to

rely on fault data obtained from the requirements or design

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.10, July 2016

17

stages. In the absence of failure data at the early stages of

development life cycle reliability can be predicted in the light

of those software metrics that are reliability relevant, maturity

level of the developer and expert opinions. It can be

noticed from some of the studies that software metrics

along with the process maturity play a prominent role in early

defect prediction, when failure data is unavailable [14].

The concept of fuzzy sets was introduced by Zadeh [15] to

represent vagueness in linguistics as a mathematical way. It

can be considered as generalization of classical set theory.

Many researchers had contributed [12, 16, 17, 18, 19] in the

area of reliability prediction using fuzzy logic. Yadav et al.

[19] present a model that predicts the number of residual

faults before testing stage. The study had used the software

metrics along with fuzzy logic to predict the remaining

defects in the software that are expected during testing or

when the software would be actually used. A new approach

was introduced by Aljahdali et al. [20] using Fuzzy Logic and

Normalized Root of Mean of the Square of Error (NRMSE)

for software reliability prediction. This design of the fuzzy

model was based on the Takagi-Sugeno (TS) fuzzy model.

Another similar study [21] introduced a methodology that

starts with the analysis of the UML model of software

architecture followed by the bayesian framework for

reliability prediction. Three different types of UML diagrams

Use Case, Sequence and Deployment diagrams were utilized.

While, another promising study [22] introduced two new

estimation methods to overcome the limitations of existing

statistical methods in estimating the defect content after a

review. In [14, 23] authors proposed fuzzy logic based defect

prediction models. The relevant metrics are judged as per

linguistic terms and fuzzy techniques were applied in order to

develop the model. The predicted defects of twenty software

projects, by the proposed model, were found very near to the

actual defects found in the testing phase.

Fuzzy Logic techniques are emerging as robust optimization

techniques that can solve highly complex, nonlinear,

correlated and discontinuous problems [12]. As most of the

early stage software metrics are not very comprehensible and

involve high and complex dependency among them. That’s

why fuzzy logic inference systems have found usefulness in

capturing and processing subjective information in terms of

software metrics in the early phase of software development.

On the basis of above paragraphs it is evident that the Fuzzy

Logic has proved its usefulness in capturing and processing

subjective information in the early stages of software

development [24]. The key issue is how it is applied in

making the software product more reliable.

3. PROPOSED RELIABILITY

PREDICTION MODEL
After recognizing the criticality of requirements and design

stage for early prediction of software reliability, it is needed to

consider the suitable and appropriate measures form these

stages. Therefore this study has focused on the identification

of reliability-relevant software metrics or measure for early

reliability prediction. For this, a comprehensive model as

depicted in figure 1 has been proposed.

Fig 1: Early Stage Reliability Prediction Model

The model integrates requirements and design metrics as input

to the fuzzy inference system to predict the reliability of the

developing software up to its design stage before the coding

starts. The model is referred as Early Stage Reliability

Prediction Model (ESRPM) and is based on the assumption

that the reliability and quality of a software system are

adversely affected by the weaknesses of requirements and

design constructs. Therefore the model focuses on these two,

most significant, early phases of SDLC.

4. MODEL IMPLEMENTATION
The proposed model is predicting the reliability using Fuzzy

Inference System (FIS), therefore implementation has been

performed through fuzzy logic toolbox of MATLAB. The

basic steps of the model implementation are identification of

requirements and design metrics as input/output variables,

development of fuzzy profile and membership functions of the

identified variables and development of fuzzy rule base.

These steps are discussed in the following sub-sections.

4.1 Identify Requirements Level Metrics
Most of the existing reliability or defect prediction models has

considered a significant number of software metrics such as

traditional software metrics, object oriented metrics and

process metrics. However, utilizing all metrics for predicting

software reliability have various drawbacks like

computational complexity, high processing cost, larger time

complexity etc. [25]. Therefore appropriate selection of

metrics could improve the prediction accuracy. However, it is

essential to consider the metrics which are most important

from reliability point of view and the researcher has gathered

following twelve software requirements metrics from various

available sources [26, 27, 28, 29].

RS (Requirements Stability), PM (Process Maturity), RSDR

(Regularity of Specification and Documentation Reviews),

RIW (Review Inspection and Walkthrough), RFD

(Requirement Defect Density), RCR (Requirement Change

Request), Scale of New Functionality Implemented, ERT

(Experience of Requirement Team), RC (Complexity of New

Functionality), QDI (Quality of Documentation Inspected),

DSM (Development Staff Motivation), and RM

(Requirements Management).

4.2 Identify Design Level Metrics
As the proposed reliability model concentrates on object-

oriented paradigm in its design phase. Therefore the

researcher has gathered following fourteen object-oriented

design metrics from various available sources [30, 31, 32, 33,

34, 35, 36, 37, 38, 39]. LCOM (Lack of Cohesion in

Methods), MPC (Message Pass Coupling), IMc (Inheritance

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.10, July 2016

18

Metric Complexity Perspective), DIT (Depth of Inheritance),

NOC (Number of Children), EMc (Encapsulation Metric

Complexity Perspective), CMc (Coupling Metric Complexity

Perspective), WMC (Weighted Method per Class), CBO

(Coupling Between Objects), Response for a Class (RFC),

CoMc (Cohesion Metric Complexity Perspective), DAC (Data

Abstraction Coupling), AHF (Attribute Hiding Factor) and

AIF (Attribute Inheritance Factor).

4.3 Select Input and Output Variables
After analyzing the twenty six identified requirements and

design metrics, eight metrics have been shortlisted and out of

these four (RS, RIW, RC, RFD) have been selected for the

requirements phase and rest four (EMc, CoMc, CMc, and

IMc) belongs to the design phase. These metrics are

considered as input variables for the fuzzy based reliability

prediction model. Apart from that, two output variables RLR

and DLR are also taken as the output for the model. RLR and

DLR represent the level of reliability at the end of

requirements and design phases, respectively.

4.4 Develop Fuzzy Profiles and Rule Base

This is the primary step to systematically incorporate expert

knowledge into the developing system [40]. As the selected

Input/output variables are fuzzy in nature and therefore should

be characterized through membership functions. In this study,

membership functions of all the input and output variables are

defined with the help of domain experts. Membership

function can have a variety of shapes like polygonal,

trapezoidal, triangular, and so on [41]. This study has used

triangular membership functions, for fuzzy profile

development of identified input/output variables, as its shape

provides a convenient representation of expert knowledge and

it also simplifies the process of computation. Membership

functions for the four variables (RIW, Inheritance, Cohesion

and DLR) are shown in figure 2, 3, 4 and 5 for visualization

purpose. The range for the values of all input and output

variables has been taken from 0 to 1.

As described above that the proposed reliability model, has

four input variables at the requirements phase, and each has

three linguistic states i.e., low (L), medium (M) and high (H).

Therefore, total number of rules is 81. Similarly in design

phase the number of input variables are five, four has three

linguistic states (i.e., low (L), medium (M) and high (H)),

while one input variable has five states (i.e., Very Low (VL),

Low (L), Medium (M) High (H) and Very High (VH)).

Considering all the selected Input/output variables

simultaneously may results into a large number of rules.

Therefore, to reduce the number of rules the researcher has

developed two set of rules corresponding to the requirements

and design phase.

Fig 2: Fuzzy Profile of RIW

Fig 3: Fuzzy Profile of Inheritance

Fig 4: Fuzzy Profile of Cohesion

Fig 5: Fuzzy Profile of DLR

4.5 Verifying the Prediction Range
Although the prediction accuracy of the developed reliability

prediction model has been computed and presented in the fifth

section, even though to analyze the reliability prediction

consistency and influence of different involved metrics on

reliability prediction, evaluating the model’s prediction range

seem quite reasonable.

Table 1. Reliability Prediction at Requirements Stage

 RS RIW RC RFD RLR

Best Case 1 1 0 0 0.953

Average Case 0.5 0.5 0.5 0.5 0.665

Worst Case 0 0 1 1 0.113

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.10, July 2016

19

Table 2. Reliability Prediction at Design Stage

 RLR EMc CoMc IMc CMc DLR

Worst Case 0 0.1 0.1 0.9 0.9 0.096

Avg. Case 0.5 0.5 0.5 0.5 0.5 0.55

Best Case 1 0.9 0.9 0.1 0.1 0.937

Table 1 and 2, and the figures 6, 7, 8, 9, 10 and11 presents the

values of RLR (Requirements Level Reliability) and DLR

(Design Level Reliability) by the developed model (ESRPM)

for the best, average and worst-case input values of different

input metrics. These values of RLR and DLR signifying the

lower and upper bounds of prediction range at the

requirements and design phase respectively. It can be easily

noticed that the value of the RLR is 0.113 in the worst case,

because the values of corresponding requirements level

measure are at their worst.

The RLR at the end of requirements phase range from 0.113

to 0.953, while the range for DLR is 0.096 to 0.937, which is

quiet satisfactory. The model also helps to determine the

influence of a particular software metrics on the requirement

or design level reliability. Once the impact of the particular

software measure on reliability has been identified, the better

and more cost effectively it can be controlled to improve the

overall reliability and quality of the product.

Fig 6: Worst Case at Requirements Phase

Fig 7: Average Case at Requirements Phase

Fig 8: Best Case at Requirements Phase

Fig 9: Best Case at Design Phase

Fig 10: Average Case at Design Phase

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.10, July 2016

20

Fig 11: Worst Case at Design Phase

Apart from ensuring the reliability prediction range from the

above diagrams, it is equally important to look at the

following surface diagrams, demonstrating the impact of

constituent metrics on the RLR as well as on the DLR.

Fig 12: Surface Diagram of DLR Vs. Inheritance and

Coupling

Looking carefully at the above figure 12, that shows the

impact of inheritance and coupling on the design level

reliability, while the values of other variable are constant, it

can be easily inferred that for any constant value of EM

(encapsulation), CoM (cohesion) and RLR (requirement level

reliability), both the metrics CM (coupling) and IM

(inheritance) has a negative impact on the DLR. When the

value of CM and IM increases, it forces the DLR to decrease.

In other words, Reliability of the software will decrease as the

coupling as well as inheritance increases in the object oriented

design.

Similarly, looking at the above figure 13, it can be easily

noticed that for any constant value of IM, CM and RLR, both

the metric EM (encapsulation) and CoM (cohesion) has a

positive impact on the DLR (design level reliability). When

the values of EM and CoM increase, it forces the DLR to

increase also. In other words, the developing software will be

more reliable if the OOD has higher level of Cohesion as well

as Encapsulation. Like the above two diagrams, the following

figure 14, represents the influence of Requirements

Complexity (RC) and Requirements Fault Density (RFD) on

Requirements Level Reliability (RLR). The diagram reflects

that for any constant value of RS and RIW, the metric values

of RC and RFD have a negative impact on the RLR. When the

value of RC and RFD increases, it forces the RLR to decrease.

Fig 13: Surface Diagram of DLR Vs. Cohesion and

Encapsulation

In other words, reliability of the developing software at the

requirements as well as design stage will decrease as the

functionalities get more complicated in the SRS along with

the density of faults in a SRS document.

Fig 14: Surface Diagram of RLR Vs. RFD and RC

5. STATISTICAL VALIDATION AND

PREDICTIVE ACCURACY
This section assesses how effectively the reliability model is

able to predict the reliability of the developing software at its

design stage. In order to ensure or validate the quantifying

ability of the developed reliability model the researcher has

contacted the well established and reputed software

developing organizations and subsequently collected the

relevant data for requirements and design stage of 20 software

projects, those had already been implemented and currently in

operation. In order to statistically validate the model,

researcher has calculated the Pearson’s correlation coefficient

between the actual reliability values (already known) and the

defuzzified (predicted) values of Design Level Reliability

(DLR).

The defuzzified (predicted) values of Design Level Reliability

(for 20 software projects) have been computed using the fuzzy

toolbox of MATLAB. These calculated values, along with

the corresponding actual reliability values can be seen in table

3. Now to ensure the quantifying ability of the model

Pearson’s correlation coefficient has been computed, between

predicted and actual reliability. Table 4 show the correlation

values between the predicted reliability and the actual

reliability (already known) of the corresponding software

project. The correlation has been computed through SPSS,

and its value is (0.936) as shown figure 15. It is evident from

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.10, July 2016

21

the value, that there exists a high positive correlation between

the reliability predicted by the ESRPM and the already known

values of reliability. Therefore, it can be concluded that the

proposed model is quantifying reliability quiet efficiently.

Table 3. Predicted and Actual Reliability Values

S.No.
Project

Number

Reliability

Predicted by the

Proposed Model

Actual

Reliability

1 P1 0.832 0.9

2 P2 0.721 0.9

3 P3 0.912 0.9

4 P4 0.600 0.75

5 P5 0.750 0.75

6 P6 0.587 0.55

7 P7 0.750 0.75

8 P8 0.550 0.55

9 P9 0.586 0.55

10 P10 0.750 0.75

11 P11 0.629 0.55

12 P12 0.614 0.55

13 P13 0.565 0.55

14 P14 0.752 0.75

15 P15 0.761 0.55

16 P16 0.320 0.35

17 P17 0.330 0.35

18 P18 0.350 0.35

19 P19 0.131 0.15

20 P20 0.210 0.15

Table 4. Pearson Correlation Coefficient

 Reliability Predicted Actual Reliability

Reliability

Predicted
1 0.936

Actual

Reliability
0.936 1

Fig 15: SPSS Output

Along with proper validation, ensuring the predictive

accuracy of a model is one of the important aspects that

cannot be ignored. Accurate modeling can assists in

scheduling resources and evaluating risk factors. Any

improvement in the accuracy of reliability prediction can

significantly impact the quality of the developing software

application [42]. It is evident from the literature that

researchers have been using various measures to ensure the

predictive accuracy of the developed models. The most

popular measures include Magnitude of Relative Error

(MRE), Mean Magnitude of Relative Error (MMRE),

Balanced MMRE (BMMRE), Median Magnitude of Relative

Error (MdMRE), Mean Absolute Percentage Error (MAPE)

and Prediction at level n (Pred(n)). Most of these measures

can be calculated through the two terms, the actual and the

predicted values [43].

In order to compute these predictive accuracy measures the

values of table 3 are used. The next task is to compute the

Magnitude of Relative Error (MRE)s, and subsequently the

Mean of these MRE values i.e. MMRE (Mean Magnitude of

Relative Error).

Sum of MRE1, MRE2,…….MRE20 = 1.964

MMRE = 1.964/20 = 0.09818

The value of MMRE is quite encouraging and falls well below

the acceptance threshold value of 0.25. Because, Conte [43]

suggests that if MMRE ≤ 0.25 then it is considered quite

acceptable prediction accuracy of any prediction model. After

computing the MMRE, next important accuracy measures to

be computed are Balanced Mean Magnitude of Relative Error

(BMMRE, as it overcomes the limitations of MMRE) and

Mean Absolute Percentage Error MAPE as shown below.

Sum of BMRE1, BMRE2,…….BMRE20 = 2.099

Balanced MMRE (BMMRE) = 0.104951

Sum of percentage errors = 196.360

Mean Absolute Percentage Error (MAPE) = 9.818023

Like MMRE the values of BMMRE and MAPE are also

comes out very promising, and reemphasizing that the model

ESRPM has a higher predictive accuracy. After computing the

MMRE and BMMRE, the quartiles of MRE distribution (i.e.

MdMRE, P25 & P75) are also calculated. In order to compute

MdMRE (Median Magnitude of Relative Error), P25 (Ist

Quartile) & P75 (IIIrd Quartile), the values of MREs are

arranged in ascending order.

Median Magnitude of Relative Error (MdMRE) = 0.066

P25 (Ist Quartile) = 0.0000

P75 (IIIrd Quartile) = 0.135152

The values of MdMRE P25 and P75 are also as good as other

values. To know the percentage of estimates with an MRE

less than or equal to 0.25, the study also computed the

Pred(0.25) as follows:

Pred(0.25) = 0.90 (90%)

The above value of Pred(0.25) indicating that the 90% of the

predicted values by the reliability model (ESRPM) have

MREs less than or equal to 0.25, that is quiet encouraging. All

the above results are also summarized in the following table 5.

Table 5. Summary of Predictive Accuracy Values

S.No. Name of Measure Value

1 MMRE 0.09818

2 BMMRE 0.10495

3 MdMRE 0.0660

4 MAPE 9.8180

5 PRED(n) 0.90 (90%)

Looking at the values of various accuracy measures, it is

evident that the prediction ability of the reliability model

ESRPM is quiet accurate. Therefore it can be concluded that

the model can be used to accurately predict the design level

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.10, July 2016

22

reliability for any Object-Oriented software before its coding

starts.

6. CONCLUSION
Although in a period of last 25 years, lot of models for

quantifying software reliability has been proposed in the

literature by various researchers. But even though, reliability

modeling is still attracting more researchers to do some

contribution in this direction. With this spirit the researcher

has proposed and implemented a fuzzy based software

reliability prediction model. The model has used eight product

based measures from the requirements and design stage. The

main factor that provides this model an edge over other

existing model is its approach of prediction. The study has

also statistically validated the developed model and computed

the various predictive accuracy measures to ensure its

prediction efficiency. The results obtained are quite

encouraging and it can be concluded that the developed

reliability prediction model is a better model.

7. REFERENCES
[1] Reibman, A. L., and Veeraraghawan, M. 1991. Reliability

Modeling: an overview for system design. IEEE

Computer Sociaty, 24(4), 49-57.

[2] Lions, J. L. 2010. ARIANE 5 Flight - 501 Failures

Report.

[3] Lyu, M. R. 1996. Handbook of Software Reliability

Engineering. IEEE Computer Society Press, Los

Alamitos, California.

[4] Dalal, S. R., Lyu, M. R., and Mallows, C. L. 2014.

Software Reliability. John Wiley & Sons.

[5] Khan, R. A., Mustafa, K., and Ahson, S. I. 2004.

Operation Profile-a key Factor for Reliability Estimation.

University Press, Gautam Das and V. P. Gulati (Eds),

CIT, 347-354.

[6] Ogheneovo, E. E. 2014. Software Dysfunction: Why Do

Software Fail?. Journal of Computer and

Communications, 2, 25-35.

[7] Rizvi, S. W. A., Singh, V. K., and Khan, R. A. 2016.

Revisiting Software Reliability Engineering with Fuzzy

Techniques. In:(IndiaCom–2016) Proc. of the 3rd IEEE

Int. Conf. on Computing for Sustainable Global

Development. Published by IEEExplore, 16-18 March,

2016. New Delhi, India.

[8] Yadav, H. B., and Yadav, D. K. 2014. Early Software

Reliability Analysis using Reliability Relevant Software

Metrics. International Journal of System Assurance

Engineering and Management, pp.1-12.

[9] Rizvi, S. W. A., and Khan, R. A. 2010. Maintainability

Estimation Model for Object-Oriented Software in

Design Phase (MEMOOD). Journal of Computing, 2(4),

26-32.

[10] Rizvi, S. W. A., and Khan, R. A. 2009. A Critical

Review on Software Maintainability Models.

Proceedings of the Conference on Cutting Edge

Computer and Electronics Technologies, 144-148.

[11] Pham, H. 2006. System Software Reliability. London:

Reliability Engineering Series, Springer.

[12] Pandey, A. K., and Goyal, N. K. 2013. Early Software

Reliability Prediction. Springer, India.

[13] Goel, A. L. 1985. Software Reliability Models:

Assumptions, Limitations, and Applicability. IEEE

Transaction on Software Engineering, 11(12), 1411-

1423.

[14] Yadav, H. B., and Yadav, D. K. 2014. Early Software

Reliability Analysis using Reliability Relevant Software

Metrics. International Journal of System Assurance

Engineering and Management,1-12.

[15] Zadeh, L. 1965. Fuzzy Sets. Information and Control, 8,

338-353.

[16] Khalsa, S. K. 2009. A Fuzzified Approach for the

Prediction of Fault Proneness and Defect Density. In:

Proceeding of World Congress on Eng., 1, 218-223.

[17] Yadav, O. P, Singh, N., Chinnam, R. B., and Goel, P. S.

2003. A Fuzzy Logic based approach to Reliability

Improvement during Product Development. Reliability

Engineering and System Safety, 80, 63-74.

[18] Yuan, D., and Zhang, C. 2011. Evaluation Strategy for

Software Reliability Based on ANFIS. In: (ICECC-11)

Proceedings of the IEEE International Conference on

Electronics and Communications and Control, 3738-

3741.

[19] Yadav, D. K., Charurvedi, S. K., and Mishra, R. B. 2012.

Early Software Defects Prediction using Fuzzy Logic.

International Journal of Performability Engineering, 8(4),

399-408.

[20] Aljahdali, S. 2011. Development of Software Reliability

Growth Models for Industrial Applications Using Fuzzy

Logic. Journal of Computer Science, 7(10),1574-1580.

[21] Cortellesa, V., Singh, H., and Cukic, B. 2002. Early

Reliability Assessment of UML Based Software Models.

In:Proceedings of the 3rd International Workshop on

Software and Performance, 302–309.

[22] Wholin, C., and Runeson, P. 1998. Defect Content

Estimations from Review Data. In:Proceedings of 20th

International Conference on Software Engineering, 400-

409.

[23] Yadav, H. B., and Yadav, D. K. 2015. A Fuzzy Logic

based Approach for Phase-wise Software Defects

Prediction using Software Metrics. Information and

Software Technology, 63, 44-57.

[24] Rizvi, S. W. A., Singh, V. K., and Khan, R. A. 2016. The

State of the Art in Software Reliability Prediction:

Software Metrics and Fuzzy Logic Perspective.

Advances in Intelligent Systems and Computing,

Springer, 433, 629-637.

[25] Mohanta, S., Vinod, G., and Mall, R. A. 2011. Technique

for Early Prediction of Software Reliability based on

Design Metrics. International Journal of System

Assurance Engineering and Management, 2(4), 261-281.

[26] He, P., Li, B., Liu, X., Chen, J., and Ma, Y. 2015. An

Empirical Study on Software Defect Prediction with a

Simplified Metric Set. Information and Software

Technology, 59, 170-190.

[27] Li, M., and Smidts, C. 2003. A ranking of software

engineering measures based on expert opinion. IEEE

Transaction on Software Engineering, 29(9), 811–824.

http://www.sciencedirect.com/science/journal/09505849

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.10, July 2016

23

[28] Martin, N., Fenton, N., and Nielson, L. 2000. Building

large-scale Bayesian networks. The Knowledge

Engineering review, 15(3), 257–284.

[29] Radjenovic, D., Hericko, M., Torkar, R., and Zivkovic,

A. 2013. Software Fault Prediction Metrics: A

Systematic Literature Review. Information and Software

Technology, 55(8), 1397-1418.

[30] Andersson, M., and Vestergren, P. 2004. Object Oriented

Design Quality Metrics. Uppsala Master’s Thesis in

Computer Science 276, ISSN 11001836, 1-27.

[31] Bansiya, J., and Devis, C. 1997. Automated Metrics for

Object-Oriented Development. Dr. Dobb’s Journal,

272(12), 42-48.

[32] Bansiya, J., and Devis, C. 2002. A Hierarchical Model

for Object-Oriented Design Quality Assessment. IEEE

Transactions on Software Engineering, 28(1), 4-17.

[33] Birkmeier, D. Q. 2010. On the State of the Art of

Coupling and Cohesion Measures for Service-Oriented

System Design metrics. Proceedings of Conference on

Information Systems (AMCIS), 1-10.

[34] Breesam, K. M. 2007. Metrics for Object-Oriented

Design Focusing on Class Inheritance Metrics. 2nd

International Conference on Dependability of Computer

Systems, June 14-16, 2007, IEEE Computer Society,

231-237.

[35] Dallal, J. A. 2010. Mathematical Validation of Object-

Oriented Class Cohesion Metrics. International Journal

of Computers, 4(2), 45-52.

[36] Gray, C. L. 2008. A Coupling Complexity Metric Suit

for Predicting Software Quality. Thesis submitted to

Polytechnic State University, California, 1-71.

[37] Yadav, A., and Khan, R. A. 2012. Development of

Encapsulated Class Complexity Metric. International

Conference on Computer, Communication, Control and

Information Technology (CCCIT-2012), Procedia

Technology, 754-760.

[38] Yadav, A., and Khan, R. A. 2011. Class Cohesion

Complexity Metric (C3M). Proceedings of International

Conference on Computer and Communication

Technology (ICCCT-2011), 363-366.

[39] Yong, C., and Qingxin, Z. 2008. Improved Metrics for

Encapsulation Based on Information Hiding. 9th

International Conference for Young Computer Scientists,

IEEE computer society, 742-724.

[40] Kumar, K. S., and Misra, R. B. 2008. An enhanced

model for early software reliability prediction using

software engineering metrics. Proceedings of 2nd

International Conference on Secure System Integration

and Reliability Improvement, 177–178.

[41] Ross, T. J. 2010. Fuzzy Logic with Engineering

Applications. 3rd Edition, John Wiley and sons.

[42] Walkerden, F., and Jeffery, R. 1999. Analogy,

Regression and Other Methods for Estimating Effort and

Software Quality Attributes. Proceeding of European

Conference Optimizing Software Development and

Maintenance, 37-46.

[43] Conte, S. D., Dunsmore, H. F., and Shen, V. Y. 1986.

Software Engineering Metrics and Models. ISBN:

0805321624, Benjamin Cummings Publishing Co., Inc.,

Redwood city, CA, USA.

IJCATM : www.ijcaonline.org

http://www.sciencedirect.com/science/article/pii/S0950584913000426
http://www.sciencedirect.com/science/article/pii/S0950584913000426
http://www.sciencedirect.com/science/article/pii/S0950584913000426
http://www.sciencedirect.com/science/journal/09505849
http://www.sciencedirect.com/science/journal/09505849
http://www.sciencedirect.com/science/journal/09505849
http://www.sciencedirect.com/science/journal/09505849

