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ABSTRACT 

The paper presents a reliability prediction model that predicts 

the reliability of the developing software using fuzzy 

inference system. The focus of the study is on the reliability 

prediction prior to the coding phase so that the developers use 

this information for optimally performing resource planning 

and quality assessment of the software under development. 

Requirements and object-oriented design level product 

measures have participated for early reliability prediction. The 

paper has also utilized the strengths of fuzzy logic to deal with 

the uncertainties and vagueness involved in the early stage 

measures. The model has also been statistically validated 

through the data set obtained through twenty real software 

projects. The values of the Pearson’s correlation coefficient 

along with the predictive accuracy measures are quite 

encouraging, and support that the developed model is a better 

and improved reliability prediction model.   
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1. INTRODUCTION 
Literature has defined the software reliability as the 

probability that a given software system has operated for 

some duration without being fail on the machine for which it 

was designed, given that it is used within design limits [1, 2]. 

As in the current scenario internet has been reducing the 

distances between geographical boundaries all over the globe 

and every sector of society whether it is transportation, 

military, telecommunication, aircrafts, shopping, home 

appliances, entertainment, education, e-governance, and so 

on, are highly influenced by computer software [3]. Such 

dependence as well as the trust on software is forcing the 

industry to provide more user friendly software within limited 

development time and resources. Consequently this pressure, 

up to some extent, has been increasing the probability of 

committing errors and making the software less reliable [4]. 

The literature exposes several unpleasant happenings related 

to the failures of software in a variety of domains [2, 4, 5, 6, 

7] due to that many people lost their lives. Lee L. in 1992 

described in his book that many patients lost their lives in 

1985 and 1986 due to software error in the Therac-25 

radiation therapy machine [4]. One incident was reported in 

1993 by South West Thames regional health authority on the 

computer aided dispatch system that was broken after its 

installation, consequently London ambulance service was 

unable to handle more than 5000 daily request for carrying 

patients in emergency situations [5]. Due to incompatible 

software responses to the pilots, aviation industry had also 

faced lots of airline crashes and abnormal flight conditions 

[6]. On January 28, 1986, space shuttle challenger broke apart 

73 seconds into its flight, leading to the death of its seven 

crew members [2]. Due to the change in the three lines of 

code in a single program in 1991, the telephone system 

collapsed in California and eastern parts [5]. On February 25, 

1991, during the Iraq war, the chopping error that missed the 

0.000000095 second in precision in every 10th of a second 

made the patriot missile fail to intercept a scud missile [6]. 

One of the major causes behind all these unfortunate events is 

the presence of unreliable software. 

As reliability has become a critical factor in software systems, 

its prediction is of great importance. An accurate estimate of 

reliability can be obtained through software reliability models 

only in the later phase of development. However, with the 

objective of cost-effectiveness and timely management of 

resources its prediction in the early phases of software 

development is one of key area of concern [8, 9, 10]. In this 

paper, the author has proposed reliability modeling that has 

used the fuzzy inference system to predict the reliability of the 

developing software before the coding start. The rest of the 

paper is organized as follows; section 2 describes the state-of-

art on reliability prediction models. Section 3 presents the 

proposed reliability prediction model, while the proposed 

model has implemented in section 4. Statistical validation and 

the predictive accuracy of the model are presented in Section 

5, while the paper concludes in section 6. 

2. RELATED WORK 
During last twenty to twenty five years a significant number 

of software reliability prediction or estimation models have 

been proposed in the literature.  These models have quantified 

the reliability during various stages of software development, 

most of them had predicted the reliability in later stages, while 

some had advocated its prediction in the early stages like 

requirements or design. According to Pham [11], reliability 

models can be classified in two major categories as 

deterministic and probabilistic models. Probabilistic models 

can be further categorized in four classes as (a) Failure rate 

model, (b) Fault count model, (c) Error seeding model, and 

(d) Software Reliability Growth Models (SRGMs). Failure 

rate models focus on the failure rate, rather on the count of 

failures. While the failures count models have interest in the 

number of failures during a specified duration rather than the 

duration gap between failures [12]. Failure seeding models 

estimate the number of faults on the basis of known number 

of seeded defects in the software [13], and a software 

reliability growth model is applicable in the last phases of 

software development and quantifies the software reliability 

in terms of estimated residual defects. They are called 

SRGMs, because with the progress of software testing 

residual defects decreases, while the reliability of the software 

grows [12]. In the absence of fault related data SRGMs are 

not applicable. In this situation researchers have an option to 

rely on fault data obtained from the requirements or design 
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stages. In the absence of failure data at the early stages of 

development life cycle reliability can be predicted in the light 

of those software metrics that are reliability relevant, maturity 

level of the developer and expert opinions. It can be 

noticed from some of the studies that software metrics 

along with the process maturity play a prominent role in early 

defect prediction, when failure data is unavailable [14]. 

The concept of fuzzy sets was introduced by Zadeh [15] to 

represent vagueness in linguistics as a mathematical way. It 

can be considered as generalization of classical set theory. 

Many researchers had contributed [12, 16, 17, 18, 19] in the 

area of reliability prediction using fuzzy logic. Yadav et al. 

[19] present a model that predicts the number of residual 

faults before testing stage. The study had used the software 

metrics along with fuzzy logic to predict the remaining 

defects in the software that are expected during testing or 

when the software would be actually used. A new approach 

was introduced by Aljahdali et al. [20] using Fuzzy Logic and 

Normalized Root of Mean of the Square of Error (NRMSE) 

for software reliability prediction. This design of the fuzzy 

model was based on the Takagi-Sugeno (TS) fuzzy model. 

Another similar study [21] introduced a methodology that 

starts with the analysis of the UML model of software 

architecture followed by the bayesian framework for 

reliability prediction. Three different types of UML diagrams 

Use Case, Sequence and Deployment diagrams were utilized. 

While, another promising study [22] introduced two new 

estimation methods to overcome the limitations of existing 

statistical methods in estimating the defect content after a 

review. In [14, 23] authors proposed fuzzy logic based defect 

prediction models. The relevant metrics are judged as per 

linguistic terms and fuzzy techniques were applied in order to 

develop the model. The predicted defects of twenty software 

projects, by the proposed model, were found very near to the 

actual defects found in the testing phase. 

Fuzzy Logic techniques are emerging as robust optimization 

techniques that can solve highly complex, nonlinear, 

correlated and discontinuous problems [12]. As most of the 

early stage software metrics are not very comprehensible and 

involve high and complex dependency among them. That’s 

why fuzzy logic inference systems have found usefulness in 

capturing and processing subjective information in terms of 

software metrics in the early phase of software development. 

On the basis of above paragraphs it is evident that the Fuzzy 

Logic has proved its usefulness in capturing and processing 

subjective information in the early stages of software 

development [24]. The key issue is how it is applied in 

making the software product more reliable. 

3. PROPOSED RELIABILITY 

PREDICTION MODEL 
After recognizing the criticality of requirements and design 

stage for early prediction of software reliability, it is needed to 

consider the suitable and appropriate measures form these 

stages. Therefore this study has focused on the identification 

of reliability-relevant software metrics or measure for early 

reliability prediction. For this, a comprehensive model as 

depicted in figure 1 has been proposed.  

 

Fig 1: Early Stage Reliability Prediction Model 

The model integrates requirements and design metrics as input 

to the fuzzy inference system to predict the reliability of the 

developing software up to its design stage before the coding 

starts. The model is referred as Early Stage Reliability 

Prediction Model (ESRPM) and is based on the assumption 

that the reliability and quality of a software system are 

adversely affected by the weaknesses of requirements and 

design constructs. Therefore the model focuses on these two, 

most significant, early phases of SDLC. 

4. MODEL IMPLEMENTATION 
The proposed model is predicting the reliability using Fuzzy 

Inference System (FIS), therefore implementation has been 

performed through fuzzy logic toolbox of MATLAB. The 

basic steps of the model implementation are identification of 

requirements and design metrics as input/output variables, 

development of fuzzy profile and membership functions of the 

identified variables and development of fuzzy rule base. 

These steps are discussed in the following sub-sections. 

4.1 Identify Requirements Level Metrics 
Most of the existing reliability or defect prediction models has 

considered a significant number of software metrics such as 

traditional software metrics, object oriented metrics and 

process metrics. However, utilizing all metrics for predicting 

software reliability have various drawbacks like 

computational complexity, high processing cost, larger time 

complexity etc. [25]. Therefore appropriate selection of 

metrics could improve the prediction accuracy. However, it is 

essential to consider the metrics which are most important 

from reliability point of view and the researcher has gathered 

following twelve software requirements metrics from various 

available sources [26, 27, 28, 29].  

RS (Requirements Stability), PM (Process Maturity), RSDR 

(Regularity of Specification and Documentation Reviews), 

RIW (Review Inspection and Walkthrough), RFD 

(Requirement Defect Density), RCR (Requirement Change 

Request), Scale of New Functionality Implemented, ERT 

(Experience of Requirement Team), RC (Complexity of New 

Functionality), QDI (Quality of Documentation Inspected), 

DSM (Development Staff Motivation), and RM 

(Requirements Management). 

4.2 Identify Design Level Metrics 
As the proposed reliability model concentrates on object-

oriented paradigm in its design phase. Therefore the 

researcher has gathered following fourteen object-oriented 

design metrics from various available sources [30, 31, 32, 33, 

34, 35, 36, 37, 38, 39]. LCOM (Lack of Cohesion in 

Methods), MPC (Message Pass Coupling), IMc (Inheritance 
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Metric Complexity Perspective), DIT (Depth of Inheritance), 

NOC (Number of Children), EMc (Encapsulation Metric 

Complexity Perspective), CMc (Coupling Metric Complexity 

Perspective), WMC (Weighted Method per Class), CBO 

(Coupling Between Objects), Response for a Class (RFC), 

CoMc (Cohesion Metric Complexity Perspective), DAC (Data 

Abstraction Coupling), AHF (Attribute Hiding Factor) and 

AIF (Attribute Inheritance Factor). 

4.3 Select Input and Output Variables 
After analyzing the twenty six identified requirements and 

design metrics, eight metrics have been shortlisted and out of 

these four (RS, RIW, RC, RFD) have been selected for the 

requirements phase and rest four (EMc, CoMc, CMc, and 

IMc) belongs to the design phase. These metrics are 

considered as input variables for the fuzzy based reliability 

prediction model. Apart from that, two output variables RLR 

and DLR are also taken as the output for the model. RLR and 

DLR represent the level of reliability at the end of 

requirements and design phases, respectively. 

4.4 Develop Fuzzy Profiles and Rule Base 

This is the primary step to systematically incorporate expert 

knowledge into the developing system [40]. As the selected 

Input/output variables are fuzzy in nature and therefore should 

be characterized through membership functions. In this study, 

membership functions of all the input and output variables are 

defined with the help of domain experts. Membership 

function can have a variety of shapes like polygonal, 

trapezoidal, triangular, and so on [41]. This study has used 

triangular membership functions, for fuzzy profile 

development of identified input/output variables, as its shape 

provides a convenient representation of expert knowledge and 

it also simplifies the process of computation. Membership 

functions for the four variables (RIW, Inheritance, Cohesion 

and DLR) are shown in figure 2, 3, 4 and 5 for visualization 

purpose. The range for the values of all input and output 

variables has been taken from 0 to 1.  

As described above that the proposed reliability model, has 

four input variables at the requirements phase, and each has 

three linguistic states i.e., low (L), medium (M) and high (H). 

Therefore, total number of rules is 81. Similarly in design 

phase the number of input variables are five, four has three 

linguistic states (i.e., low (L), medium (M) and high (H)), 

while one input variable has five states (i.e., Very Low (VL), 

Low (L), Medium (M) High (H) and Very High (VH)). 

Considering all the selected Input/output variables 

simultaneously may results into a large number of rules. 

Therefore, to reduce the number of rules the researcher has 

developed two set of rules corresponding to the requirements 

and design phase. 

 

Fig 2: Fuzzy Profile of RIW 

 

Fig 3: Fuzzy Profile of Inheritance 

 

Fig 4: Fuzzy Profile of Cohesion 

 

Fig 5: Fuzzy Profile of DLR 

4.5 Verifying the Prediction Range 
Although the prediction accuracy of the developed reliability 

prediction model has been computed and presented in the fifth 

section, even though to analyze the reliability prediction 

consistency and influence of different involved metrics on 

reliability prediction, evaluating the model’s prediction range 

seem quite reasonable. 

Table 1. Reliability Prediction at Requirements Stage 

 RS RIW RC RFD RLR 

Best Case 1 1 0 0 0.953 

Average Case 0.5 0.5 0.5 0.5 0.665 

Worst Case 0 0 1 1 0.113 
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Table 2. Reliability Prediction at Design Stage 

 RLR EMc CoMc IMc CMc DLR 

Worst Case 0 0.1 0.1 0.9 0.9 0.096 

Avg. Case 0.5 0.5 0.5 0.5 0.5 0.55 

Best Case 1 0.9 0.9 0.1 0.1 0.937 
 

Table 1 and 2, and the figures 6, 7, 8, 9, 10 and11 presents the 

values of RLR (Requirements Level Reliability) and DLR 

(Design Level Reliability) by the developed model (ESRPM) 

for the best, average and worst-case input values of different 

input metrics. These values of RLR and DLR signifying the 

lower and upper bounds of prediction range at the 

requirements and design phase respectively. It can be easily 

noticed that the value of the RLR is 0.113 in the worst case, 

because the values of corresponding requirements level 

measure are at their worst. 

The RLR at the end of requirements phase range from 0.113 

to 0.953, while the range for DLR is 0.096 to 0.937, which is 

quiet satisfactory. The model also helps to determine the 

influence of a particular software metrics on the requirement 

or design level reliability. Once the impact of the particular 

software measure on reliability has been identified, the better 

and more cost effectively it can be controlled to improve the 

overall reliability and quality of the product. 

 

Fig 6: Worst Case at Requirements Phase 

 

Fig 7: Average Case at Requirements Phase 

 

 

Fig 8: Best Case at Requirements Phase  

 

Fig 9: Best Case at Design Phase 

 

Fig 10: Average Case at Design Phase 
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Fig 11: Worst Case at Design Phase 

Apart from ensuring the reliability prediction range from the 

above diagrams, it is equally important to look at the 

following surface diagrams, demonstrating the impact of 

constituent metrics on the RLR as well as on the DLR.  

 

Fig 12: Surface Diagram of DLR Vs. Inheritance and 

Coupling 

Looking carefully at the above figure 12, that shows the 

impact of inheritance and coupling on the design level 

reliability, while the values of other variable are constant, it 

can be easily inferred that for any constant value of EM 

(encapsulation), CoM (cohesion) and RLR (requirement level 

reliability), both the metrics CM (coupling) and IM 

(inheritance) has a negative impact on the DLR. When the 

value of CM and IM increases, it forces the DLR to decrease. 

In other words, Reliability of the software will decrease as the 

coupling as well as inheritance increases in the object oriented 

design. 

Similarly, looking at the above figure 13, it can be easily 

noticed that for any constant value of IM, CM and RLR, both 

the metric EM (encapsulation) and CoM (cohesion) has a 

positive impact on the DLR (design level reliability). When 

the values of EM and CoM increase, it forces the DLR to 

increase also. In other words, the developing software will be 

more reliable if the OOD has higher level of Cohesion as well 

as Encapsulation. Like the above two diagrams, the following 

figure 14, represents the influence of Requirements 

Complexity (RC) and Requirements Fault Density (RFD) on 

Requirements Level Reliability (RLR). The diagram reflects 

that for any constant value of RS and RIW, the metric values 

of RC and RFD have a negative impact on the RLR. When the 

value of RC and RFD increases, it forces the RLR to decrease. 

 

Fig 13: Surface Diagram of DLR Vs. Cohesion and 

Encapsulation 

In other words, reliability of the developing software at the 

requirements as well as design stage will decrease as the 

functionalities get more complicated in the SRS along with 

the density of faults in a SRS document.   

 

Fig 14: Surface Diagram of RLR Vs. RFD and RC 

5. STATISTICAL VALIDATION AND 

PREDICTIVE ACCURACY 
This section assesses how effectively the reliability model is 

able to predict the reliability of the developing software at its 

design stage. In order to ensure or validate the quantifying 

ability of the developed reliability model the researcher has 

contacted the well established and reputed software 

developing organizations and subsequently collected the 

relevant data for requirements and design stage of 20 software 

projects, those had already been implemented and currently in 

operation. In order to statistically validate the model, 

researcher has calculated the Pearson’s correlation coefficient 

between the actual reliability values (already known) and the 

defuzzified (predicted) values of Design Level Reliability 

(DLR). 

The defuzzified (predicted) values of Design Level Reliability 

(for 20 software projects) have been computed using the fuzzy 

toolbox of MATLAB.  These calculated values, along with 

the corresponding actual reliability values can be seen in table 

3. Now to ensure the quantifying ability of the model 

Pearson’s correlation coefficient has been computed, between 

predicted and actual reliability. Table 4 show the correlation 

values between the predicted reliability and the actual 

reliability (already known) of the corresponding software 

project. The correlation has been computed through SPSS, 

and its value is (0.936) as shown figure 15. It is evident from 
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the value, that there exists a high positive correlation between 

the reliability predicted by the ESRPM and the already known 

values of reliability. Therefore, it can be concluded that the 

proposed model is quantifying reliability quiet efficiently. 

Table 3. Predicted and Actual Reliability Values 

S.No. 
Project 

Number 

Reliability 

Predicted by the 

Proposed Model  

Actual 

Reliability 

1 P1 0.832 0.9 

2 P2 0.721 0.9 

3 P3 0.912 0.9 

4 P4 0.600 0.75 

5 P5 0.750 0.75 

6 P6 0.587 0.55 

7 P7 0.750 0.75 

8 P8 0.550 0.55 

9 P9 0.586 0.55 

10 P10 0.750 0.75 

11 P11 0.629 0.55 

12 P12 0.614 0.55 

13 P13 0.565 0.55 

14 P14 0.752 0.75 

15 P15 0.761 0.55 

16 P16 0.320 0.35 

17 P17 0.330 0.35 

18 P18 0.350 0.35 

19 P19 0.131 0.15 

20 P20 0.210 0.15 

Table 4. Pearson Correlation Coefficient 

 Reliability Predicted Actual Reliability 

Reliability 

Predicted 
1 0.936 

Actual 

Reliability 
0.936 1 

 

 

Fig 15: SPSS Output 

Along with proper validation, ensuring the predictive 

accuracy of a model is one of the important aspects that 

cannot be ignored. Accurate modeling can assists in 

scheduling resources and evaluating risk factors. Any 

improvement in the accuracy of reliability prediction can 

significantly impact the quality of the developing software 

application [42]. It is evident from the literature that 

researchers have been using various measures to ensure the 

predictive accuracy of the developed models. The most 

popular measures include Magnitude of Relative Error 

(MRE), Mean Magnitude of Relative Error (MMRE), 

Balanced MMRE (BMMRE), Median Magnitude of Relative 

Error (MdMRE), Mean Absolute Percentage Error (MAPE) 

and Prediction at level n (Pred(n)). Most of these measures 

can be calculated through the two terms, the actual and the 

predicted values [43].  

In order to compute these predictive accuracy measures the 

values of table 3 are used. The next task is to compute the 

Magnitude of Relative Error (MRE)s, and subsequently the 

Mean of these MRE values i.e. MMRE (Mean Magnitude of 

Relative Error). 

Sum of MRE1, MRE2,…….MRE20 = 1.964 

MMRE = 1.964/20 = 0.09818 

The value of MMRE is quite encouraging and falls well below 

the acceptance threshold value of 0.25. Because, Conte [43] 

suggests that if MMRE ≤ 0.25 then it is considered quite 

acceptable prediction accuracy of any prediction model. After 

computing the MMRE, next important accuracy measures to 

be computed are Balanced Mean Magnitude of Relative Error 

(BMMRE, as it overcomes the limitations of MMRE) and 

Mean Absolute Percentage Error MAPE as shown below. 

 

Sum of BMRE1, BMRE2,…….BMRE20 = 2.099 

Balanced MMRE (BMMRE) = 0.104951 

Sum of percentage errors = 196.360 

Mean Absolute Percentage Error (MAPE) =  9.818023 

Like MMRE the values of BMMRE and MAPE are also 

comes out very promising, and reemphasizing that the model 

ESRPM has a higher predictive accuracy. After computing the 

MMRE and BMMRE, the quartiles of MRE distribution (i.e. 

MdMRE, P25 & P75) are also calculated. In order to compute 

MdMRE (Median Magnitude of Relative Error), P25 (Ist 

Quartile) & P75 (IIIrd Quartile), the values of MREs are 

arranged in ascending order. 

Median Magnitude of Relative Error (MdMRE) = 0.066 

P25 (Ist Quartile) = 0.0000 

P75 (IIIrd Quartile) = 0.135152 

The values of MdMRE P25 and P75 are also as good as other 

values. To know the percentage of estimates with an MRE 

less than or equal to 0.25, the study also computed the 

Pred(0.25) as follows:   

Pred(0.25) = 0.90 (90%) 

The above value of Pred(0.25) indicating that the 90% of the 

predicted values by the reliability model (ESRPM) have 

MREs less than or equal to 0.25, that is quiet encouraging. All 

the above results are also summarized in the following table 5. 

Table 5. Summary of Predictive Accuracy Values 

S.No. Name of Measure Value 

1 MMRE 0.09818 

2 BMMRE 0.10495 

3 MdMRE 0.0660 

4 MAPE 9.8180 

5 PRED(n) 0.90 (90%) 

Looking at the values of various accuracy measures, it is 

evident that the prediction ability of the reliability model 

ESRPM is quiet accurate. Therefore it can be concluded that 

the model can be used to accurately predict the design level 
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reliability for any Object-Oriented software before its coding 

starts. 

6. CONCLUSION 
Although in a period of last 25 years, lot of models for 

quantifying software reliability has been proposed in the 

literature by various researchers. But even though, reliability 

modeling is still attracting more researchers to do some 

contribution in this direction. With this spirit the researcher 

has proposed and implemented a fuzzy based software 

reliability prediction model. The model has used eight product 

based measures from the requirements and design stage. The 

main factor that provides this model an edge over other 

existing model is its approach of prediction. The study has 

also statistically validated the developed model and computed 

the various predictive accuracy measures to ensure its 

prediction efficiency. The results obtained are quite 

encouraging and it can be concluded that the developed 

reliability prediction model is a better model. 
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