
International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.10, July 2016

28

Threshold Analysis and Comparison of Sequential and

Parallel Divide and Conquer Sorting Algorithms

Tinku Singh
Department of Computer
Science and Engineering

BRCM, College of Engineering
 and Technology,

Bahal, Haryana, India

Durgesh Kumar Srivastava
Department of Computer
Science and Engineering

BRCM, College of Engineering
 and Technology, Bahal,

 Haryana, India

ABSTRACT

One of the basic problems in computer science is sorting that

need to be fast and efficient, since data is growing day by

day. Various applications need fast sorting algorithms like Big

Data analyses particularly in large scale scientific, social/web

mining and commercial application domains. Divide and

conquer Sorting Algorithms (Quick sort and merge sort)

provides the best running time among all the sorting

algorithms. When parallelism is applied to these algorithms,

new performance leaps are accomplished. Recent parallel

programming procedures and environment needs profound

changes in programs to accomplish parallelism furthermore

constitute puzzling, confounding and mistake inclined

constructs and standards. When the number of processors

utilization gets large, the overhead of thread synchronization

and processor scheduling gets increase, this diminishes the

speedup. In this paper, two algorithms are designed using C#

viz. parallel quick sort and parallel merge sort that uses

Parallel.Invoke() method. Both algorithms when executed

over multicore architecture compute the threshold beyond

which the above mentioned algorithms achieve speedup in

comparison to its sequential version, Also threshold is

calculated and compared for both the algorithms for uneven

input size.

Keywords
Parallel, threshold, multicore, speedup, sorting, complexity,

processor.

1. INTRODUCTION

1.1 Divide and conquer paradigm
Divide and conquer [1] is a design perspective that works with

multi branch recursion. Since recursion is utilized as a part of

divide and conquer paradigm for solving subproblems, so it’s

a need that each subproblem should be smaller enough in

compared to the original problem and there should be a base

case for subproblems. A problem is broken up into small

subproblems of the same kind using the recursion; this

practice is repeated until problem gets to be adequately basic

to be explained easily as shown in figure 1. The solution of

these small arrangements is done and it is joined to give

arrangement of the first problem. Divide-and-conquer

algorithms are finished in three sections:

• Division of the problem into a quantity of subproblems

those are smaller in size of the original problem.

• Conquer the subproblems subsequent to illuminating

them utilizing recursion. If the subproblem is small

enough, solve this as base case.

• Combine the solutions to these subproblems to find the

solution for the original problem.

Fig 1: Divide and Conquer paradigm

Divide and conquer sorting algorithms are the best sorting

algorithms(quick sort and merge sort) among all comparison

based available sorting algorithms in terms of running time.

1.2 Parallelism in Programming-
As there is the limitation for achieving the CPU clock speed,

manufacturers moved towards increasing the core counts. But

the standard single-threaded code will not be able to utilize

the CPU cores.

The server applications can easily handle the multiple cores

assignment for the majority of the server applications, when a

client sends the request; it can be separately handled by a

thread. In the desktop applications however it is difficult - in

light of the fact that computationally rigorous code usually

requires that you do the following:

1. Partition the code into small partitions.

2. As a part of the parallel Execution, assign these

small partitions to multiple threads.

3. Results of the parallel executions are gathered as it

will be accessible, in a thread-safe manner.

“The idea of parallel programming comes from the

multithreading that strengths multicore or various processors”

There work among the threads can be partitioned by two

ways: task parallelism and data parallelism.

1.2.1 Task parallelism-
 It is the type of unstructured parallelism. All the instructions

of your program are not parallel. Parallel work is sprinkled

over the complete program.

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.10, July 2016

29

1.2.2 Data parallelism-
It’s a form of parallelism where, same task is performed on

different data items. It is a type of structured parallelism.

When, structured parallelism and unstructured parallelism are

compared, structured parallelism is easy and less erroneous, it

explains how to perform partitioning and it also has better

techniques for thread coordination.

In this paper, parallel divide and conquer sorting algorithms

(quick sort and merge sort) are presented and compared for

performance with their sequential version performance. On

comparing their performances, it is found that the size of the

array that is called threshold value T, at which the parallel

algorithm becomes slower than their sequential version.

Because of load imbalance in parallel applications due to

various reasons like- parallelism overhead, thread creation,

time spent at synchronization, thread communication,

granularity of task decomposition. This provides enough data

to draw a conclusion about the threshold in performance when

using the parallel sorting algorithm.

2. QUICKSORT
British computer scientist Tony Hoare in 1959/1960

developed Quicksort, it is a sorting technique that is based on

divide and conquer paradigm [2]. The implementation of

simple Quicksort algorithm is as follows:

 Choose an element from the array. It is said to be pivot

element. Generally the last element out of the sorting

section is selected.

 Iterate through the sorting section; place all numbers

smaller to the pivot to a position on its left and all other

numbers to the position on its right. This is achieved by

swapping the elements.

 The pivot element is in sorted position after the iteration

and this process carry on using recursion with the divide-

and conquer approach, same approach is followed on the

left subpart and right subpart, until the complete array is

sorted.

For sorting n number of elements, the number of comparison

made by quicksort will be O(nlog2n) in average case and it

makes O(n2) comparisons, in the worst case, Although it

occurs rarely. In practical aspects it is faster than other

O(nlogn) algorithms [3]

2.1 Parallel Quicksort
In parallel quicksort, It is assumed that system has distributed

memory [3]. Unsorted list is distributed by applying some

approach of distribution on the threads.

Parallel quicksort algorithm is expected to produce the

following result:

 The array stored on each subprocess is sorted.

 The last element on process i’s array is smaller than the

first element on process i + 1’s array.

The first element is chosen as pivot element from the first

process and places all the numbers smaller to the pivot to a

position on its left and all other numbers to the position on its

right. Now this process is divided into two sub processes

using Parallel.Invoke() method in C#, to work parallel. This

process is continued by applying the same algorithm on the

left subpart and right subpart recursively as shown in figure 2.

After log2P recursions, every subprocess has an unsorted list

of values completely disjoint from the values held by the other

sub processes. The largest value on subprocess i will be

smaller than the smallest value held by subprocess i + 1.

Fig 2: parallel quicksort

public void QuickSortParallel<K>(K[] input, int leftOfArray,

int rightOfArray) where K : IComparable<K>

 {

 if (leftOfArray >= rightOfArray)

 {

 return;

 }

 Swap(input, leftOfArray, (leftOfArray + rightOfArray) / 2);

 int lastElement = leftOfArray;

 for (int current = leftOfArray + 1; current <=

rightOfArray; ++current)

{

 if (input[current].CompareTo(input[leftOfArray]) < 0)

 {

 ++lastElement;

 Swap(input, lastElement, current);

 }

}

 Swap(input, leftOfArray, lastElement);

 Parallel.Invoke(

() => QuickSortParallel (input, leftOfArray,

lastElement - 1),

 () => QuickSortParallel (input, lastElement + 1,

rightOfArray)

);

}

Public void Swap<K>(K[] inputArr, int index1, int index2)

 {

 K temp = inputArr[index1];

 inputArr[index1] = inputArr[index2];

 inputArr[index1] = temp;

 }

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.10, July 2016

30

3. MERGESORT
Mergesort is recursive algorithm that works on divide-and-

conquer approach [3], it always partition the input array into 2

equal parts, this process partitioning continues until each sub

array contains one element. Recursion is used for splitting the

array into two equal arrays [4].

For a sequence of n items MergeSort works as follows:

Base case: If the array has more than one element n > 1, the

array is splitted into two equal halves and merge sort is

recursively called on them.

Merge: Both the sub arrays are merged during the merge

step, into a single sorted array. As shown in figure-2, merging

is the procedure of taking two smaller arrays and combining

them together into a single, sorted array as shown in figure 3.

Fig 3: MergeSort with recursion

Recurrence relation for the mergesort based on the recursion

tree shown in figure 4, is-

T (n) = 2 T (n/2) + cn

Fig 4: Recursion tree for Mergesort

Therefore, the running time for mergesort is: O (nlog2n)

3.1 Parallel Mergesort
In parallel merge sort an array is partitioned into two equal

parts and efficient sorting functions is applied on sub arrays in

parallel [5], Most basic construct for the parallelism is:

Parallel.Invoke() (Threading.Tasks);

Using Threading.Tasks two tasks are passed for the left

subpart and right subpart in the parallel for the sorting, and

wait for both of them to finish. Invoke is a synchronous

method, it will return when it has executed all tasks. Invoke()

method is used to create a number of tasks and execute them

in parallel. Parallel.Invoke() offers promising parallelism,

when used other methods in the Parallel Task Library,

Pseudo code

Input: Array A [starting...ending], indices starting and ending

(ending >=mid >= starting). Arr [starting...ending] is the input

array to be divided.

A [start] is the beginning element and A [ending] is the

ending element

Output: Array A [starting...ending] in ascending order

Public void MergeSort_Parallel(k[] myArr, T[] temporary, int

begining, int ending, int coreCount)

{

if (ending - begining + 1 <= SEQUENTIAL_THRESHOLD ||

coreCount <= 0)

{

MergeSort (myArr, temporary, begining, ending);

return;

}

var mid = (begining + ending) / 2;

coreCount--;

Parallel.Invoke (

() => MergeSort_Parallel (temporary, myArr, begining, mid,

coreCount),

() => MergeSort_Parallel (temporary, myArr, mid + 1,

ending, coreCount)

);

Merge_Parallel (myArr, temporary, begining, mid, mid + 1,

ending, begining, coreCount);

}

Parallel.Invoke() is used for parallel execution of merging of

two arrays. This is as follows:

public void Merge_Parallel(T[] myArr, T[] temporary, int

beginingX, int endingX, int beginingY, int endingY, int

beginingMyArr, int coreCount)

 {

 .………………

 ……………….

 if (lengthX < lengthY)

 {

Merge_Parallel(myArr, temporary, beginingY,

endingY, beginingX, endingX, beginingMyArr, coreCount);

 return;

 }

 var midX = (beginingX + endingX) / 2;

 var midY = BinarySearch(temporary, beginingY,

endingY, temporary[midX]);

 .………………

 ……………….

 Parallel.Invoke(

 () => Merge_Parallel(myArr, temporary, beginingX,

midX - 1, beginingY, midY - 1,beginingMyArr, coreCount),

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.10, July 2016

31

 () => Merge_Parallel(myArr, temporary, midX + 1,

endingX, midY, endingY, midMyArr + 1, coreCount)

);

 }

4. RELATED WORK
Multicore processor models are intended to boost execution

and minimize heat yield by coordinating two or more

processor centers into a solitary processor socket [6]. Parallel

programming can exploit multicore innovation. Current

structures have 2, 4, or 8 centers on a solitary processor,

however industry insiders are anticipating requests of

greatness bigger quantities of centers in the not very

separation in future.

It is thought that dual core processor will have two times

faster execution speed as compared to the single core

processor [7]. But answer is no. A processor with two cores is

one and half time more effective than single core processor.

Execution speed increases about fifty percent.

Chip multiprocessors - additionally called multicore

microchips or CMPs is a multithreaded design, which

incorporates more than one processor on a solitary chip [8]. In

this engineering, every processor has its own L1 cache. The

L2 cache and the bus interface are shared among processors.

Intel Core 2 Duo is a case of such design that is shown in

figure 5; it has two processors on a solitary chip, each of them

has a L1 cache, and both of them are sharing the L2 cache [9].

These models not just give a facility to executing and running

the parallelized applications without a requirement for

building interconnected machines additionally improve the

information administration operations among parallel

procedures because of the solid usage of hardware resources.

Fig 5: Core 2 Duo processor

4.1 Parallel with multicore
Higher performance can be achieved by executing parallel

code on multiple cores, in comparison to single core processor

[10]. Work is distributed among multiple cores using

multithreading. In multicore CPU, a wide range of

applications can be executed in parallel more efficiently

because of low inter-processor communication latency

between the cores.

Large uniprocessors are no more scaling in execution, since it

is just conceivable to remove a restricted measure of

parallelism from an average guideline stream utilizing usual

superscalar direction issue techniques. On the other hand,

numerous parameters, for example, transfer speed, latency,

caches and even the framework programming influence the

execution of such systems [11]. Parallel machines are

produced using ware processors and information parallelism

is not a decent model when the code has bunches of branches

The vital source of wastefulness in parallel codes:

• Parallelism overhead.

• Thread synchronization, correspondence and creation.

• Load irregularity because of various measures of work

across the processors.

• Communication and computation.

• Time spent at synchronization is high and is uneven over

processors, however not generally so straightforward

• Task conditions - Can all tasks be keep running in any

request (counting parallel)?

With the parallel algorithms Because of load imbalance due to

various reasons like- parallelism overhead, Thread creation,

Time spent at synchronization, thread communication, extra

cost of creating, monitoring and managing of the parallel tasks

is added to the total computational cost [11].

Fig 6: Division of work into threads

Fig 7: Combining the result of child threads into a parent

thread.

Based on these assumptions it can be said that if divide and

conquer sorting algorithms are solved in parallel using the

following steps-

 Division of an Array into multiple sub arrays using

multithreading as shown in figure 6.

 Combining these sub arrays into a single array after

solving them recursively as shown in figure 7.

Complete process takes extra computational time because of

multiple thread creation and synchronization. This extra time

is too costly for the small size of array that parallel version of

divide and conquer sorting algorithms takes more time than

their sequential version.

5. EXPERIMENTAL RESULT
A Graphical user Interface(GUI) based application is designed

using Visual C# that will calculate the running time of the

different sorting (Quicksort, parallel quick sort, merge sort

and parallel merge sort) algorithms. The results for the

running time along with Algorithm name and number of

elements will be stored in the separate list box as shown in

figure 8. Scientific lab (scilab) is application software that is

used in this paper for drawing the graphs for the results.

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.10, July 2016

32

Figure 8: GUI tool for running the sorting algorithms

Table1 shows the average running time (in milliseconds) of

quicksort, parallel quicksort, mergesort and parallel mergesort

with respect to increasing number of input values. It shows

that using Parallel.Invoke() parallel quick sort performs better

over quick sort after a threshold value and parallel merge sort

performs better over merge sort after a threshold value. Serial

version of quick sort and merge sort works better for small

number of elements. When the number of elements are

increased. After a value that is called the threshold value.

Parallel version of quick sort and merge sort works better, due

to the use of parallelism and proper utilization of CPU cores.

Table 1, average running time of different sorting

algorithms

Input

Size

(n)

Average Running Time(ms)

Sequential

Quick Sort

Parallel

Quick

Sort

Sequential

Merge Sort

Parallel

Merge

Sort

5000 2 5 5 7

10000 4 6 7 9

15000 6 7 8 11

20000 8 9 11 12

25000 11 14 14 14

30000 12 14 17 15

35000 17 14 20 17

40000 21 19 24 19

Figure 8 shows that the quicksort performs better over parallel

quicksort up to the threshold value as the tasks get executed in

a parallel fashion on multiple cores.

Fig 8: Quick Sort vs. Parallel Quick Sort

Figure 9 shows that the merge sort performs better over

parallel merge sort up to the threshold value as the tasks get

executed in a parallel fashion on multiple cores.

Fig 9: Mergesort vs. Parallel Mergesort

6. CONCLUSION
In this paper the divide and conquer sorting problem for large

data sets are considered, and compared successfully. The

effect of the number of cores on the performance of quicksort

and mergesort has been theoretically and experimentally

studied. The basis of analysis is the average running time on

dual core processor. It is observed that parallel sorting

algorithms i.e. parallel versions of quicksort and mergesort

performs well for higher number of inputs in comparison to

their sequential versions as shown in figure 8 and figure 9. For

small size of input, sequential version of quicksort and

mergesort is better to their parallel version, because of

parallelism overhead, thread creation, time spent at

synchronization, thread communication, granularity of task

decomposition etc. In future, same analysis can be performed

with parallel sorting algorithms for wide variety of MIMD

architectures and the processors with more than two cores. In

future, parallel sorting algorithms can be used for enhancing

the performance of CPU and parallel divide and conquer

sorting algorithms can be used for measuring the performance

of CPU cores separately.

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.10, July 2016

33

7. REFERENCES
[1] Rohit Yadav, Nitin Kr. Verma and Kratika Varshney,

Volume 3, Issue 11, November 2013, Analysis of

Recursive and Non-recursive Merge Sort Algorithm,

International Journal of Advanced Research in Computer

Science and Software

[2] Sabahat Saleem, M. IkramUllah Lali1, M. Saqib Nawaz1

and Abou Bakar Nauman, Vol.7, No.2 (2014), pp.151-

164, Multi-Core Program Optimization: Parallel Sorting

Algorithms in Intel Cilk Plus, International Journal of

Hybrid Information Technology

[3] Alaa Ismail El-Nashar, Vol.2, No.3, May 2011

PARALLEL PERFORMANCE OF MPI SORTING

ALGORITHMS ON DUAL–CORE PROCESSOR

WINDOWS-BASED SYSTEMS, International Journal

of Distributed and Parallel Systems (IJDPS)

[4] Ishwari Singh Rajput, Bhawnesh Kumar and Tinku

Singh, Volume 57– No.9, November 2012, Performance

Comparison of Sequential Quick Sort and Parallel Quick

Sort Algorithms, International Journal of Computer

Applications (0975 – 8887).

[5] Ishwari Singh Rajput, Deepa Gupta, Vol. 2 Issue 3 May

2013, An Adaptive framework for Parallel Merge Sort

Algorithm on Multicore Architecture, International

Journal of Latest Trends in Engineering and Technology

(IJLTET).

[6] G. Koch, 2013 March 5, Multi-Core Introduction”, Intel

Developer Zone, https://software.intel.com/en-

us/articles/multi-core-introduction.

[7] Archana Ganesh Said, Volume 6, Issue 4, April 2016,

Multi-core Processors – A New Approach towards

Multiprocessing, International Journal of Advanced

Research in Computer Science and Software

Engineering.

[8] Abdulrahman Hamed Almutairi & Abdulrahman Helal

Alruwaili, Volume 12 Issue 10 Version 1.0, Year 2012,

Improving of Quicksort Algorithm Performance by

Sequential Thread or Parallel Algorithms, Global Journal

of Computer Science and Technology Hardware &

Computation.

[9] Nitin Chaturvedi, S Gurunarayanan, Vol.4, No.4,

July2013, STUDY OF VARIOUS FACTORS

AFFECTING PERFORMANCE OF MULTI-CORE

PROCESSORS, International Journal of Distributed and

Parallel Systems (IJDPS).

[10] http://people.eecs.berkeley.edu/~yelick/cs194f07/lectures

/lect01-whyparallel.pdf

[11] Christian Martin, embedded world 2014, Multicore

Processors: Challenges, Opportunities, Emerging Trends,

exhibition & conference.

[12] Dali Ismail, http://www.cse.wustl.edu/~jain/cse567-

13/ftp/multicore.pdf

IJCATM : www.ijcaonline.org

http://people.eecs.berkeley.edu/~yelick/cs194f07/lectures%20%20/lect01-whyparallel.pdf
http://people.eecs.berkeley.edu/~yelick/cs194f07/lectures%20%20/lect01-whyparallel.pdf

